

Bugzilla Documentation

	1. About This Documentation

	2. User Guide

	3. Installation and Maintenance Guide

	4. Administration Guide

	5. Integration and Customization Guide

	6. WebService API Reference

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

1. About This Documentation

This is the documentation for version 5.0 of Bugzilla, a bug-tracking
system from Mozilla. Bugzilla is an enterprise-class piece of software
that tracks millions of bugs and issues for thousands of organizations around
the world.

The most current version of this document can always be found on the
Bugzilla website [https://www.bugzilla.org/docs/].

1.1. Evaluating Bugzilla

The Bugzilla FAQ [https://wiki.mozilla.org/Bugzilla:FAQ] may be helpful,
as it answers a number of questions people sometimes have about whether
Bugzilla is for them.

1.2. Getting More Help

If this document does not answer your questions, we run a
Mozilla forum [https://www.mozilla.org/about/forums/#support-bugzilla]
which can be accessed as a newsgroup, mailing list, or over the web as a
Google Group. Please
search it [https://groups.google.com/forum/#!forum/mozilla.support.bugzilla]
first, and then ask your question there.

If you need a guaranteed response, commercial support is
available [https://www.bugzilla.org/support/consulting.html] for Bugzilla
from a number of people and organizations.

1.3. Document Conventions

This document uses the following conventions:

Warning

This is a warning—something you should be aware of.

 2. User Guide

2. User Guide

	2.1. Creating an Account

	2.2. Filing a Bug
	2.2.1. Reporting a New Bug

	2.2.2. Clone an Existing Bug

	2.3. Understanding a Bug
	2.3.1. Flags

	2.4. Editing a Bug
	2.4.1. Attachments

	2.4.2. Flags

	2.4.3. Time Tracking

	2.4.4. Life Cycle of a Bug

	2.5. Finding Bugs
	2.5.1. Quicksearch

	2.5.2. Simple Search

	2.5.3. Advanced Search

	2.5.4. Custom Search

	2.5.5. Bug Lists

	2.6. Reports and Charts
	2.6.1. Reports

	2.6.2. Charts

	2.7. Pro Tips
	2.7.1. Autolinkification

	2.7.2. Comments

	2.8. User Preferences
	2.8.1. General Preferences

	2.8.2. Email Preferences

	2.8.3. Saved Searches

	2.8.4. Account Information

	2.8.5. API Keys

	2.8.6. Permissions

	2.9. Installed Extensions

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 2.1. Creating an Account

2.1. Creating an Account

If you want to use a particular installation of Bugzilla, first you need to
create an account. Ask the administrator responsible for your installation
for the URL you should use to access it.

The process of creating an account is similar to many other websites.

	On the home page, click the New Account link in the header.
Enter your email address, then click the Send
button.

Note

If the New Account link is not available, this means that the
administrator of the installation has disabled self-registration.
Speak to the administrator to find out how to get an account.

 2.2. Filing a Bug

2.2. Filing a Bug

2.2.1. Reporting a New Bug

Years of bug writing experience has been distilled for your
reading pleasure into the
Bug Writing Guidelines [https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines].
While some of the advice is Mozilla-specific, the basic principles of
reporting Reproducible, Specific bugs and isolating the Product you are
using, the Version of the Product, the Component which failed, the Hardware
Platform, and Operating System you were using at the time of the failure go a
long way toward ensuring accurate, responsible fixes for the bug that bit you.

The procedure for filing a bug is as follows:

	Click the New link available in the header or footer
of pages, or the File a Bug link on the home page.

	First, you have to select the product in which you found a bug.

	You now see a form where you can specify the component (part of
the product which is affected by the bug you discovered; if you have
no idea, just select General if such a component exists),
the version of the program you were using, the operating system and
platform your program is running on and the severity of the bug (if the
bug you found crashes the program, it’s probably a major or a critical
bug; if it’s a typo somewhere, that’s something pretty minor; if it’s
something you would like to see implemented, then that’s an enhancement).

	You also need to provide a short but descriptive summary of the bug you found.
“My program is crashing all the time” is a very poor summary
and doesn’t help developers at all. Try something more meaningful or
your bug will probably be ignored due to a lack of precision.
In the Description, give a detailed list of steps to reproduce
the problem you encountered. Try to limit these steps to a minimum set
required to reproduce the problem. This will make the life of
developers easier, and the probability that they consider your bug in
a reasonable timeframe will be much higher.

Note

Try to make sure that everything in the Summary is also in the
Description. Summaries are often updated and this will ensure your original
information is easily accessible.

 2.3. Understanding a Bug

2.3. Understanding a Bug

The core of Bugzilla is the screen which displays a particular
bug. Note that the labels for most fields are hyperlinks;
clicking them will take you to context-sensitive help on that
particular field. Fields marked * may not be present on every
installation of Bugzilla.

	Summary:

	A one-sentence summary of the problem, displayed in the header next to
the bug number.

	Status (and Resolution):

	These define exactly what state the bug is in—from not even
being confirmed as a bug, through to being fixed and the fix
confirmed by Quality Assurance. The different possible values for
Status and Resolution on your installation should be documented in the
context-sensitive help for those items.

	Alias:

	A unique short text name for the bug, which can be used instead of the
bug number.

	Product and Component:

	Bugs are divided up by Product and Component, with a Product
having one or more Components in it.

	Version:

	The “Version” field usually contains the numbers or names of released
versions of the product. It is used to indicate the version(s) affected by
the bug report.

	Hardware (Platform and OS):

	These indicate the computing environment where the bug was
found.

	Importance (Priority and Severity):

	The Priority field is used to prioritize bugs, either by the assignee,
or someone else with authority to direct their time such as a project
manager. It’s a good idea not to change this on other people’s bugs. The
default values are P1 to P5.

The Severity field indicates how severe the problem is—from blocker
(“application unusable”) to trivial (“minor cosmetic issue”). You
can also use this field to indicate whether a bug is an enhancement
request.

	*Target Milestone:

	A future version by which the bug is to
be fixed. e.g. The Bugzilla Project’s milestones for future
Bugzilla versions are 4.4, 5.0, 6.0, etc. Milestones are not
restricted to numbers, though—you can use any text strings, such
as dates.

	Assigned To:

	The person responsible for fixing the bug.

	*QA Contact:

	The person responsible for quality assurance on this bug.

	URL:

	A URL associated with the bug, if any.

	*Whiteboard:

	A free-form text area for adding short notes and tags to a bug.

	Keywords:

	The administrator can define keywords which you can use to tag and
categorise bugs—e.g. crash or regression.

	Personal Tags:

	Unlike Keywords which are global and visible by all users, Personal Tags
are personal and can only be viewed and edited by their author. Editing
them won’t send any notifications to other users. Use them to tag and keep
track of sets of bugs that you personally care about, using your own
classification system.

	Dependencies (Depends On and Blocks):

	If this bug cannot be fixed unless other bugs are fixed (depends
on), or this bug stops other bugs being fixed (blocks), their
numbers are recorded here.

Clicking the Dependency tree link shows
the dependency relationships of the bug as a tree structure.
You can change how much depth to show, and you can hide resolved bugs
from this page. You can also collapse/expand dependencies for
each non-terminal bug on the tree view, using the [-]/[+] buttons that
appear before the summary.

	Reported:

	The person who filed the bug, and the date and time they did it.

	Modified:

	The date and time the bug was last changed.

	CC List:

	A list of people who get mail when the bug changes, in addition to the
Reporter, Assignee and QA Contact (if enabled).

	Ignore Bug Mail:

	Set this if you want never to get bugmail from this bug again. See also
Email Preferences.

	*See Also:

	Bugs, in this Bugzilla, other Bugzillas, or other bug trackers, that are
related to this one.

	Flags:

	A flag is a kind of status that can be set on bugs or attachments
to indicate that the bugs/attachments are in a certain state.
Each installation can define its own set of flags that can be set
on bugs or attachments. See Flags.

	*Time Tracking:

	This form can be used for time tracking.
To use this feature, you have to be a member of the group
specified by the timetrackinggroup parameter. See
Time Tracking for more information.

	Orig. Est.:

	This field shows the original estimated time.

	Current Est.:

	This field shows the current estimated time.
This number is calculated from Hours Worked
and Hours Left.

	Hours Worked:

	This field shows the number of hours worked.

	Hours Left:

	This field shows the Current Est. -
Hours Worked.
This value + Hours Worked will become the
new Current Est.

	%Complete:

	This field shows what percentage of the task is complete.

	Gain:

	This field shows the number of hours that the bug is ahead of the
Orig. Est..

	Deadline:

	This field shows the deadline for this bug.

	Attachments:

	You can attach files (e.g. test cases or patches) to bugs. If there
are any attachments, they are listed in this section. See
Attachments for more information.

	Additional Comments:

	You can add your two cents to the bug discussion here, if you have
something worthwhile to say.

2.3.1. Flags

Flags are a way to attach a specific status to a bug or attachment,
either + or -. The meaning of these symbols depends on the name of
the flag itself, but contextually they could mean pass/fail,
accept/reject, approved/denied, or even a simple yes/no. If your site
allows requestable flags, then users may set a flag to ? as a
request to another user that they look at the bug/attachment and set
the flag to its correct status.

A set flag appears in bug reports and on “edit attachment” pages with the
abbreviated username of the user who set the flag prepended to the
flag name. For example, if Jack sets a “review” flag to +, it appears
as Jack: review [+].

A requested flag appears with the user who requested the flag prepended
to the flag name and the user who has been requested to set the flag
appended to the flag name within parentheses. For example, if Jack
asks Jill for review, it appears as Jack: review [?] (Jill).

You can browse through open requests made of you and by you by selecting
My Requests from the footer. You can also look at open requests
limited by other requesters, requestees, products, components, and flag names.
Note that you can use ‘-’ for requestee to specify flags with no requestee
set.

2.3.1.1. A Simple Example

A developer might want to ask their manager,
“Should we fix this bug before we release version 2.0?”
They might want to do this for a lot of bugs,
so they decide to streamline the process. So:

	The Bugzilla administrator creates a flag type called blocking2.0 for bugs
in your product. It shows up on the Show Bug screen as the text
blocking2.0 with a drop-down box next to it. The drop-down box
contains four values: an empty space, ?, -, and +.

	The developer sets the flag to ?.

	The manager sees the blocking2.0
flag with a ? value.

	If the manager thinks the feature should go into the product
before version 2.0 can be released, they set the flag to
+. Otherwise, they set it to -.

	Now, every Bugzilla user who looks at the bug knows whether or
not the bug needs to be fixed before release of version 2.0.

2.3.1.2. About Flags

Flags can have four values:

	?

	A user is requesting that a status be set. (Think of it as ‘A question is being asked’.)

	-

	The status has been set negatively. (The question has been answered no.)

	+

	The status has been set positively.
(The question has been answered yes.)

	_

	unset actually shows up as a blank space. This just means that nobody
has expressed an opinion (or asked someone else to express an opinion)
about the matter covered by this flag.

2.3.1.3. Flag Requests

If a flag has been defined as requestable, and a user has enough
privileges to request it (see below), the user can set the flag’s status to
?. This status indicates that someone (a.k.a. “the requester”) is asking
someone else to set the flag to either + or -.

If a flag has been defined as specifically requestable,
a text box will appear next to the flag into which the requester may
enter a Bugzilla username. That named person (a.k.a. “the requestee”)
will receive an email notifying them of the request, and pointing them
to the bug/attachment in question.

If a flag has not been defined as specifically requestable,
then no such text box will appear. A request to set this flag cannot be made
of any specific individual; these requests are open for anyone to answer. In
Bugzilla this is known as “asking the wind”. A requester may ask the wind on
any flag simply by leaving the text box blank.

2.3.1.4. Attachment Flags

There are two types of flags: bug flags and attachment flags.

Attachment flags are used to ask a question about a specific
attachment on a bug.

Many Bugzilla installations use this to
request that one developer review another
developer’s code before they check it in. They attach the code to
a bug report, and then set a flag on that attachment called
review to
review? reviewer@example.com.
reviewer@example.com is then notified by email that
they have to check out that attachment and approve it or deny it.

For a Bugzilla user, attachment flags show up in three places:

	On the list of attachments in the Show Bug
screen, you can see the current state of any flags that
have been set to ?, +, or -. You can see who asked about
the flag (the requester), and who is being asked (the
requestee).

	When you edit an attachment, you can
see any settable flag, along with any flags that have
already been set. The Edit Attachment
screen is where you set flags to ?, -, +, or unset them.

	Requests are listed in the Request Queue, which
is accessible from the My Requests link (if you are
logged in) or Requests link (if you are logged out)
visible on all pages.

2.3.1.5. Bug Flags

Bug flags are used to set a status on the bug itself. You can
see Bug Flags in the Show Bug and Requests
screens, as described above.

Only users with enough privileges (see below) may set flags on bugs.
This doesn’t necessarily include the assignee, reporter, or users with the
editbugs permission.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 2.4. Editing a Bug

2.4. Editing a Bug

2.4.1. Attachments

Attachments are used to attach relevant files to bugs - patches, screenshots,
test cases, debugging aids or logs, or anything else binary or too large to
fit into a comment.

You should use attachments, rather than comments, for large chunks of plain
text data, such as trace, debugging output files, or log files. That way, it
doesn’t bloat the bug for everyone who wants to read it, and cause people to
receive large, useless mails.

You should make sure to trim screenshots. There’s no need to show the
whole screen if you are pointing out a single-pixel problem.

Bugzilla stores and uses a Content-Type for each attachment
(e.g. text/html). To download an attachment as a different
Content-Type (e.g. application/xhtml+xml), you can override this
using a ‘content_type’ parameter on the URL, e.g.
&content_type=text/plain.

Also, you can enter the URL pointing to the attachment instead of
uploading the attachment itself. For example, this is useful if you want to
point to an external application, a website or a very large file.

It’s also possible to create an attachment by pasting text directly in a text
field; Bugzilla will convert it into an attachment. This is pretty useful
when you are copying and pasting, to avoid the extra step of saving the text
in a temporary file.

2.4.2. Flags

To set a flag, select either + or - from the drop-down
menu next to the name of the flag in the Flags list. The meaning
of these values are flag-specific and thus cannot be described in this
documentation, but by way of example, setting a flag named review
+ may indicate that the bug/attachment has passed review, while
setting it to - may indicate that the bug/attachment has failed
review.

To unset a flag, click its drop-down menu and select the blank value.
Note that marking an attachment as obsolete automatically cancels all
pending requests for the attachment.

If your administrator has enabled requests for a flag, request a flag
by selecting ? from the drop-down menu and then entering the
username of the user you want to set the flag in the text field next to the
menu.

2.4.3. Time Tracking

Users who belong to the group specified by the timetrackinggroup
parameter have access to time-related fields. Developers can see
deadlines and estimated times to fix bugs, and can provide time spent
on these bugs. Users who do not belong to this group can only see the deadline
but not edit it. Other time-related fields remain invisible to them.

At any time, a summary of the time spent by developers on bugs is
accessible either from bug lists when clicking the Time Summary
button or from individual bugs when clicking the Summarize time
link in the time tracking table. The summarize_time.cgi
page lets you view this information either per developer or per bug
and can be split on a month basis to have greater details on how time
is spent by developers.

As soon as a bug is marked as RESOLVED, the remaining time expected
to fix the bug is set to zero. This lets QA people set it again for
their own usage, and it will be set to zero again when the bug is
marked as VERIFIED.

2.4.4. Life Cycle of a Bug

The life cycle of a bug, also known as workflow, is customizable to match
the needs of your organization (see Workflow).
The image below contains a graphical representation of
the default workflow using the default bug statuses. If you wish to
customize this image for your site, the
diagram file
is available in Dia’s [http://www.gnome.org/projects/dia]
native XML format.

[image: ../_images/bzLifecycle.png]

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 2.5. Finding Bugs

2.5. Finding Bugs

Bugzilla has a number of different search options.

Note

Bugzilla queries are case-insensitive and accent-insensitive when
used with either MySQL or Oracle databases. When using Bugzilla with
PostgreSQL, however, some queries are case sensitive. This is due to
the way PostgreSQL handles case and accent sensitivity.

 2.6. Reports and Charts

2.6. Reports and Charts

As well as the standard buglist, Bugzilla has two more ways of
viewing sets of bugs. These are the reports (which give different
views of the current state of the database) and charts (which plot
the changes in particular sets of bugs over time).

2.6.1. Reports

A report is a view of the current state of the bug database.

You can run either an HTML-table-based report, or a graphical
line/pie/bar-chart-based one. The two have different pages to
define them but are close cousins - once you’ve defined and
viewed a report, you can switch between any of the different
views of the data at will.

Both report types are based on the idea of defining a set of bugs
using the standard search interface and then choosing some
aspect of that set to plot on the horizontal and/or vertical axes.
You can also get a form of 3-dimensional report by choosing to have
multiple images or tables.

So, for example, you could use the search form to choose “all
bugs in the WorldControl product” and then plot their severity
against their component to see which component had had the largest
number of bad bugs reported against it.

Once you’ve defined your parameters and hit Generate Report,
you can switch between HTML, CSV, Bar, Line and Pie. (Note: Pie
is only available if you didn’t define a vertical axis, as pie
charts don’t have one.) The other controls are fairly self-explanatory;
you can change the size of the image if you find text is overwriting
other text, or the bars are too thin to see.

2.6.2. Charts

A chart is a view of the state of the bug database over time.

Bugzilla currently has two charting systems - Old Charts and New
Charts. Old Charts have been part of Bugzilla for a long time; they
chart each status and resolution for each product, and that’s all.
They are deprecated, and going away soon - we won’t say any more
about them.
New Charts are the future - they allow you to chart anything you
can define as a search.

Note

Both charting forms require the administrator to set up the
data-gathering script. If you can’t see any charts, ask them whether
they have done so.

 2.7. Pro Tips

2.7. Pro Tips

This section distills some Bugzilla tips and best practices
that have been developed.

2.7.1. Autolinkification

Bugzilla comments are plain text - so typing <U> will
produce less-than, U, greater-than rather than underlined text.
However, Bugzilla will automatically make hyperlinks out of certain
sorts of text in comments. For example, the text
http://www.bugzilla.org will be turned into a link:
http://www.bugzilla.org.
Other strings which get linkified in the obvious manner are:

	bug 12345

	bugs 123, 456, 789

	comment 7

	comments 1, 2, 3, 4

	bug 23456, comment 53

	attachment 4321

	mailto:george@example.com

	george@example.com

	ftp://ftp.mozilla.org

	Most other sorts of URL

A corollary here is that if you type a bug number in a comment,
you should put the word “bug” before it, so it gets autolinkified
for the convenience of others.

2.7.2. Comments

If you are changing the fields on a bug, only comment if
either you have something pertinent to say or Bugzilla requires it.
Otherwise, you may spam people unnecessarily with bugmail.
To take an example: a user can set up their account to filter out messages
where someone just adds themselves to the CC field of a bug
(which happens a lot). If you come along, add yourself to the CC field,
and add a comment saying “Adding self to CC”, then that person
gets a pointless piece of mail they would otherwise have avoided.

Don’t use sigs in comments. Signing your name (“Bill”) is acceptable,
if you do it out of habit, but full mail/news-style
four line ASCII art creations are not.

If you feel a bug you filed was incorrectly marked as a
DUPLICATE of another, please question it in your bug, not
the bug it was duped to. Feel free to CC the person who duped it
if they are not already CCed.

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 2.8. User Preferences

2.8. User Preferences

Once logged in, you can customize various aspects of
Bugzilla via the “Preferences” link in the page footer.
The preferences are split into a number of tabs, detailed in the sections
below.

2.8.1. General Preferences

This tab allows you to change several default settings of Bugzilla.
Administrators have the power to remove preferences from this list, so you
may not see all the preferences available.

Each preference should be self-explanatory.

2.8.2. Email Preferences

This tab allows you to enable or disable email notification on
specific events.

In general, users have almost complete control over how much (or
how little) email Bugzilla sends them. If you want to receive the
maximum amount of email possible, click the Enable All
Mail button. If you don’t want to receive any email from
Bugzilla at all, click the Disable All Mail button.

Note

A Bugzilla administrator can stop a user from receiving
bugmail by clicking the Bugmail Disabled checkbox
when editing the user account. This is a drastic step
best taken only for disabled accounts, as it overrides
the user’s individual mail preferences.

 2.9. Installed Extensions

2.9. Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an
extension comes with documentation in the appropriate format, and you build
your own copy of the Bugzilla documentation using makedocs.pl, then
the documentation for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the
last time you compiled the documentation):

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 3. Installation and Maintenance Guide

3. Installation and Maintenance Guide

Note

If you just want to use Bugzilla,
you do not need to install it. None of this chapter is relevant to
you. Ask your Bugzilla administrator for the URL to access it from
your web browser. You may want to read the User Guide.

 3.1. Quick Start (Ubuntu Linux 22.04)

3.1. Quick Start (Ubuntu Linux 22.04)

This quick start guide makes installing Bugzilla as simple as possible for
those who are able to choose their environment. It creates a system using
Ubuntu Linux 22.04 LTS, Apache and MariaDB. It requires a little familiarity
with Linux and the command line.

3.1.1. Obtain Your Hardware

Ubuntu 22.04 LTS Server requires a 64-bit processor.
Bugzilla itself has no prerequisites beyond that, although you should pick
reliable hardware. You can also probably use any 64-bit virtual machine
or cloud instance that you have root access on.

3.1.2. Install the OS

Get Ubuntu Server 22.04 LTS [https://www.ubuntu.com/download/server]
and follow the installation instructions [https://www.ubuntu.com/download/server/install-ubuntu-server].
Here are some tips:

	You do not need an encrypted lvm group, root or home directory.

	Choose all the defaults for the “partitioning” part (excepting of course
where the default is “No” and you need to press “Yes” to continue).

	Choose any server name you like.

	When creating the initial Linux user, call it bugzilla, give it a
strong password, and write that password down.

	From the install options, choose “OpenSSH Server”.

Reboot when the installer finishes.

3.1.3. Become root

ssh to the machine as the ‘bugzilla’ user, or start a console. Then:

sudo su

3.1.4. Install Prerequisites

apt install git nano

apt install apache2 build-essential mariadb-server
libcgi-pm-perl libdigest-sha-perl libtimedate-perl libdatetime-perl
libdatetime-timezone-perl libdbi-perl libtemplate-perl
libemail-address-perl libemail-sender-perl libemail-mime-perl
liburi-perl liblist-moreutils-perl libmath-random-isaac-perl
libjson-xs-perl libgd-perl libchart-perl libtemplate-plugin-gd-perl
libgd-text-perl libgd-graph-perl libmime-tools-perl libwww-perl
libxml-twig-perl libnet-ldap-perl libauthen-sasl-perl
libnet-smtp-ssl-perl libauthen-radius-perl libsoap-lite-perl
libxmlrpc-lite-perl libjson-rpc-perl libtest-taint-perl
libhtml-parser-perl libhtml-scrubber-perl libencode-perl
libencode-detect-perl libemail-reply-perl
libhtml-formattext-withlinks-perl libtheschwartz-perl
libdaemon-generic-perl libapache2-mod-perl2 libapache2-mod-perl2-dev
libfile-mimeinfo-perl libio-stringy-perl libcache-memcached-perl
libfile-copy-recursive-perl libfile-which-perl libdbd-mysql-perl
perlmagick lynx graphviz python3-sphinx rst2pdf

This will take a little while. It’s split into two commands so you can do
the next steps (up to step 7) in another terminal while you wait for the
second command to finish. If you start another terminal, you will need to
sudo su again.

3.1.5. Configure MariaDB

The following instructions use the simple nano editor, but feel
free to use any text editor you are comfortable with.

nano /etc/mysql/mariadb.conf.d/50-server.cnf

Set the following values, which increase the maximum attachment size and
make it possible to search for short words and terms:

	Uncomment and alter on Line 34 to have a value of at least: max_allowed_packet=100M

	Add as new line 42, in the [mysqld] section: ft_min_word_len=2

Save and exit.

Then, add a user to MariaDB for Bugzilla to use:

mysql -u root -e "GRANT ALL PRIVILEGES ON bugs.* TO bugs@localhost IDENTIFIED BY '$db_pass'"

Replace $db_pass with a strong password you have generated. Write it down.
You should make $db_pass different to your password.

Restart MariaDB:

service mariadb restart

3.1.6. Configure Apache

nano /etc/apache2/sites-available/bugzilla.conf

Paste in the following and save:

This configuration sets up Bugzilla to be served on your server under /bugzilla path.
For more in depth setup instructions, refer to Apache section of this documentation.

a2ensite bugzilla

a2enmod cgi headers expires rewrite

service apache2 restart

3.1.7. Download Bugzilla

Get it from our Git repository:

mkdir -p /var/www/webapps

cd /var/www/webapps

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla bugzilla

(where “X.X” is the 2-digit version number of the stable release of Bugzilla
that you want - e.g. 5.0)

3.1.8. Check Setup

Bugzilla comes with a checksetup.pl script which helps with the
installation process. It will need to be run twice. The first time, it
generates a config file (called localconfig) for the database
access information, and the second time (step 10)
it uses the info you put in the config file to set up the database.

cd /var/www/webapps/bugzilla

./checksetup.pl

3.1.9. Edit localconfig

nano localconfig

You will need to set the following values:

	Line 29: set $webservergroup to www-data

	Line 67: set $db_pass to the password for the bugs user you created
in MariaDB a few steps ago

3.1.10. Check Setup (again)

Run the checksetup.pl script again to set up the database.

./checksetup.pl

It will ask you to give an email address, real name and password for the
first Bugzilla account to be created, which will be an administrator.
Write down the email address and password you set.

3.1.11. Test Server

./testserver.pl http://localhost/bugzilla

All the tests should pass. You will get a warning about failing to run
gdlib-config; just ignore it.

3.1.12. Access Via Web Browser

Access the front page:

lynx http://localhost/bugzilla

It’s not really possible to use Bugzilla for real through Lynx, but you
can view the front page to validate visually that it’s up and running.

You might well need to configure your DNS such that the server has, and
is reachable by, a name rather than IP address. Doing so is out of scope
of this document. In the mean time, it is available on your local network
at http://<ip address>/bugzilla, where <ip address> is (unless you
have a complex network setup) the address starting with 192 displayed when
you run hostname -I.

3.1.13. Accessing Bugzilla from the Internet

To be able to access Bugzilla from anywhere in the world, you don’t have
to make it internet facing at all, there are free VPN services that let
you set up your own network that is accessible anywhere. One of those is
Tailscale, which has a fairly accessible Quick Start guide [https://tailscale.com/kb/1017/install/].

If you are setting up an internet facing Bugzilla, it’s essential to set
up SSL, so that the communication between the server and users is
encrypted. For local and intranet installation this matters less, and
for those cases, you could set up a self signed local certificate
instead.

There are a few ways to set up free SSL thanks to Let’s Encrypt [https://letsencrypt.org/].
The two major ones would be Apache’s mod_md [https://httpd.apache.org/docs/2.4/mod/mod_md.html]
and EFF’s certbot [https://certbot.eff.org/instructions?ws=apache&os=ubuntufocal],
but we don’t cover the exact specifics of this here, as that’s out of
scope of this guide.

3.1.14. Configure Bugzilla

Once you have worked out how to access your Bugzilla in a graphical
web browser, bring up the front page, click Log In in the
header, and log in as the admin user you defined in step 10.

Click the Parameters link on the page it gives you, and set
the following parameters in the Required Settings section:

	urlbase:
http://<servername>/bugzilla/ or http://<ip address>/bugzilla/

	ssl_redirect:
on if you set up an SSL certificate

Click Save Changes at the bottom of the page.

There are several ways to get Bugzilla to send email. The easiest is to
use Gmail, so we do that here so you have it working. Visit
https://gmail.com and create a new Gmail account for your Bugzilla to use.
Then, open the Email section of the Parameters using the link
in the left column, and set the following parameter values:

	mail_delivery_method: SMTP

	mailfrom: new_gmail_address@gmail.com

	smtpserver: smtp.gmail.com:465

	smtp_username: new_gmail_address@gmail.com

	smtp_password: new_gmail_password

	smtp_ssl: On

Click Save Changes at the bottom of the page.

And you’re all ready to go. :-)

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 3.2. Linux

3.2. Linux

Some Linux distributions include Bugzilla and its dependencies in their
package management systems. If you have root access, installing Bugzilla on
any Linux system could be as simple as finding the Bugzilla package in the
package management application and installing it. There may be a small bit
of additional configuration required.

If you are installing your machine from scratch, Quick Start (Ubuntu Linux 22.04) may be
the best instructions for you.

3.2.1. Install Packages

Use your distribution’s package manager to install Perl, your preferred
database engine (MySQL or MariaDB if in doubt), and a webserver (Apache if in doubt).
Some distributions even have a Bugzilla package, although that will vary
in age.

The commands below will install those things and some of Bugzilla’s other
prerequisites as well. If you find a package doesn’t install or the name
is not found, just remove it from the list and reissue the command. If you
want to use a different database or webserver, substitute the package
names as appropriate.

3.2.1.1. Fedora, CentOS Stream and RHEL

The following command will install Fedora’s packaged version of Bugzilla:

dnf install bugzilla httpd mariadb-server

Then, you can skip to configuring your database.
It may be useful to know that Fedora stores the Bugzilla files in
/usr/share/bugzilla, so that’s where you’ll run checksetup.pl.

If you want to install a version of Bugzilla from the Bugzilla project
or have it on RHEL or CentOS, you will need to do the following instead:

On CentOS Stream and RHEl, add the Fedora EPEL repo, in the way described
in the installation instructions [https://docs.fedoraproject.org/en-US/epel/].

Run the following to install the base Bugzilla dependencies:

dnf install git httpd httpd-devel mariadb-devel gcc
mariadb-server mod_perl mod_perl-devel 'perl(autodie)' 'perl(CGI)'
'perl(Date::Format)' 'perl(DateTime)' 'perl(DateTime::TimeZone)'
'perl(DBI)' 'perl(DBD::mysql)' 'perl(Digest::SHA)' 'perl(Email::MIME)'
'perl(Email::Sender)' 'perl(fields)' 'perl(JSON::XS)'
'perl(List::MoreUtils)' 'perl(Math::Random::ISAAC)' 'perl(Memoize)'
'perl(Safe)' 'perl(Template)' 'perl(URI)'

On Fedora, all the optional dependencies are available:

dnf install gd-devel graphviz patchutils
'perl(Apache2::SizeLimit)' 'perl(Authen::Radius)' 'perl(Authen::SASL)'
'perl(Cache::Memcached)' 'perl(Chart::Lines)' 'perl(Daemon::Generic)'
'perl(Email::Reply)' 'perl(Encode)' 'perl(Encode::Detect)'
'perl(File::Copy::Recursive)' 'perl(File::MimeInfo::Magic)'
'perl(File::Which)' 'perl(GD)' 'perl(GD::Graph)' 'perl(GD::Text)' 'perl(HTML::FormatText::WithLinks)' 'perl(HTML::Parser)'
'perl(HTML::Scrubber)' 'perl(IO::Scalar)' 'perl(JSON::RPC)'
'perl(LWP::UserAgent)' 'perl(MIME::Parser)' 'perl(mod_perl2)'
'perl(Net::LDAP)' 'perl(Net::SMTP::SSL)' 'perl(PatchReader)'
'perl(SOAP::Lite)' 'perl(Template::Plugin::GD::Image)'
'perl(Test::Taint)' 'perl(TheSchwartz)' 'perl(XMLRPC::Lite)'
'perl(XML::Twig)'

On CentOS Stream and RHEL with EPEL, some modules are missing in the
repositories, so use the following instead:

dnf install gd-devel graphviz patchutils
'perl(Apache2::SizeLimit)' 'perl(Authen::Radius)' 'perl(Authen::SASL)'
'perl(Cache::Memcached)' 'perl(Encode)' 'perl(Encode::Detect)'
'perl(File::Copy::Recursive)' 'perl(File::MimeInfo::Magic)'
'perl(File::Which)' 'perl(GD)' 'perl(GD::Graph)' 'perl(GD::Text)'
'perl(HTML::Parser)' 'perl(HTML::Scrubber)' 'perl(IO::Scalar)'
'perl(JSON::RPC)' 'perl(LWP::UserAgent)' 'perl(MIME::Parser)'
'perl(mod_perl2)' 'perl(Net::LDAP)' 'perl(Net::SMTP::SSL)'
'perl(SOAP::Lite)' 'perl(Test::Taint)' 'perl(XMLRPC::Lite)'
'perl(XML::Twig)'

and install the missing optional modules with:

cd /var/www/html/bugzilla/ && ./install-module.pl Chart::Lines
Daemon::Generic Email::Reply HTML::FormatText::WithLinks PatchReader
Template::Plugin::GD::Image TheSchwartz

If you plan to use a database other than MariaDB, you will need to also install
the appropriate packages for that.

3.2.1.2. Ubuntu and Debian

You can install required packages with:
apt install apache2 build-essential git
libcgi-pm-perl libdatetime-perl libdatetime-timezone-perl
libdbi-perl libdigest-sha-perl libemail-address-perl
libemail-mime-perl libemail-sender-perl libjson-xs-perl
liblist-moreutils-perl libmath-random-isaac-perl libtemplate-perl
libtimedate-perl liburi-perl libmariadb-dev-compat libdbd-mysql-perl
mariadb-server

If you plan to use a database other than MariaDB, you will need to also install
the appropriate packages for that (in the command above, the packages required
for MariaDB are libdbd-mysql-perl, libmariadb-dev-compat and mariadb-server).

You can install optional packages with:
apt install graphviz libapache2-mod-perl2
libapache2-mod-perl2-dev libauthen-radius-perl libauthen-sasl-perl
libcache-memcached-perl libchart-perl libdaemon-generic-perl
libemail-reply-perl libencode-detect-perl libencode-perl
libfile-copy-recursive-perl libfile-mimeinfo-perl libfile-which-perl
libgd-dev libgd-graph-perl libgd-perl libgd-text-perl
libhtml-formattext-withlinks-perl libhtml-parser-perl
libhtml-scrubber-perl libio-stringy-perl libjson-rpc-perl
libmime-tools-perl libnet-ldap-perl libnet-smtp-ssl-perl
libsoap-lite-perl libtemplate-plugin-gd-perl libtest-taint-perl
libtheschwartz-perl libwww-perl libxmlrpc-lite-perl libxml-twig-perl

There is no Ubuntu package for PatchReader and so you will have to install that module
outside the package manager if you want it.

3.2.1.3. Gentoo

emerge -av bugzilla

will install Bugzilla and all its dependencies. If you don’t have the vhosts
USE flag enabled, Bugzilla will end up in /var/www/localhost/bugzilla.

Then, you can skip to configuring your database.

3.2.1.4. openSUSE

zypper in bugzilla

has been available in the openSUSE Leap repositories since 15.2 and is
in the openSUSE Tumbleweed repositories, also comes with an optional
bugzilla-apache package, that allows you to skip to
configuring your database

3.2.2. Perl

Test which version of Perl you have installed with:

$ perl -v

Bugzilla requires at least Perl 5.10.1.

3.2.3. Bugzilla

The best way to get Bugzilla is to check it out from git:

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla

Run the above command in your home directory, replacing “X.X” with the 2-digit
version number of the stable release of Bugzilla that you want - e.g. “4.4”.

If that’s not possible, you can
download a tarball of Bugzilla [http://www.bugzilla.org/download/].

Place Bugzilla in a suitable directory, accessible by the default web server
user (probably apache or www-data).
Good locations are either directly in the web server’s document directory
(often /var/www/html) or in /usr/local, either with a
symbolic link to the web server’s document directory or an alias in the web
server’s configuration.

Warning

The default Bugzilla distribution is NOT designed to be placed
in a cgi-bin directory. This
includes any directory which is configured using the
ScriptAlias directive of Apache.

 3.3. Windows

3.3. Windows

Making Bugzilla work on Windows is not more difficult than making it work on
Linux. However, fewer developers use Windows to test Bugzilla and so we would
still recommend using Linux for large sites to get better support.

3.3.1. Perl

You have two main choices to install Perl on Windows: ActivePerl and Strawberry
Perl.

The ActivePerl Windows Installer can be downloaded from the
ActiveState website [http://www.activestate.com/activeperl/downloads].
Perl will be installed by default into C:\Perl. It is not
recommended to install Perl into a directory containing a space, such as
C:\Program Files. Once the install has completed, log out and log in
again to pick up the changes to the PATH environment variable.

The Strawberry Perl Windows Installer can be downloaded from the
Strawberry Perl website [http://strawberryperl.com]. Perl will be installed
by default into C:\Strawberry.

One big advantage of Strawberry Perl over ActivePerl is that with Strawberry
Perl, you can use the usual tools available on other OSes to install missing
Perl modules directly from CPAN, whereas ActivePerl requires you to use its own
ppm tool to download pre-compiled Perl modules from ActiveState.
The modules in the ActivePerl repository may be a bit older than those on CPAN.

3.3.2. Bugzilla

The best way to get Bugzilla is to check it out from git. Download and install
git from the git website [http://git-scm.com/download], and then run:

git clone --branch release-X.X-stable https://github.com/bugzilla/bugzilla C:\bugzilla

where “X.X” is the 2-digit version number of the stable release of Bugzilla
that you want (e.g. 5.0).

The rest of this documentation assumes you have installed Bugzilla into
C:\bugzilla. Adjust paths appropriately if not.

If it’s not possible to use git (e.g. because your Bugzilla machine has no
internet access), you can
download a tarball of Bugzilla [http://www.bugzilla.org/download/] and
copy it across. Bugzilla comes as a ‘tarball’ (.tar.gz extension),
which any competent Windows archiving tool should be able to open.

3.3.3. Perl Modules

Bugzilla requires a number of Perl modules to be installed. Some of them are
mandatory, and some others, which enable additional features, are optional.

If you are using ActivePerl, these modules are available in the ActiveState
repository, and are installed with the ppm tool. You can either use it
on the command line as below, or just type ppm, and you will get a GUI.
If you use a proxy server or a firewall you may have trouble running PPM.
This is covered in the
ActivePerl FAQ [http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html#ppm_and_proxies].

Install the following mandatory modules with:

ppm install <modulename>

	CGI.pm

	Digest-SHA

	TimeDate

	DateTime

	DateTime-TimeZone

	DBI

	Template-Toolkit

	Email-Sender

	Email-MIME

	URI

	List-MoreUtils

	Math-Random-ISAAC

	JSON-XS

	Win32

	Win32-API

	DateTime-TimeZone-Local-Win32

The following modules enable various optional Bugzilla features; try and
install them, but don’t worry too much to begin with if you can’t get them
installed:

	GD

	Chart

	Template-GD

	GDTextUtil

	GDGraph

	MIME-tools

	libwww-perl

	XML-Twig

	PatchReader

	perl-ldap

	Authen-SASL

	Net-SMTP-SSL

	RadiusPerl

	SOAP-Lite

	XMLRPC-Lite

	JSON-RPC

	Test-Taint

	HTML-Parser

	HTML-Scrubber

	Encode

	Encode-Detect

	Email-Reply

	HTML-FormatText-WithLinks

	TheSchwartz

	Daemon-Generic

	mod_perl

	Apache-SizeLimit

	File-MimeInfo

	IO-stringy

	Cache-Memcached

	File-Copy-Recursive

If you are using Strawberry Perl, you should use the install-module.pl
script to install modules, which is the same script used for Linux. Some of
the required modules are already installed by default. The remaining ones can
be installed using the command:

perl install-module.pl <modulename>

The list of modules to install will be displayed by checksetup.pl; see
below.

3.3.4. Web Server

Any web server that is capable of running CGI scripts can be made to work.
We have specific instructions for the following:

	Apache on Windows

	Microsoft IIS

3.3.5. Database Engine

Bugzilla supports MySQL, PostgreSQL, Oracle and SQLite as database servers.
You only require one of these systems to make use of Bugzilla. MySQL is
most commonly used, and is the only one for which Windows instructions have
been tested. SQLite is good for trial installations as it requires no
setup. Configure your server according to the instructions below:

	MySQL

	PostgreSQL

	Oracle

	SQLite

3.3.6. localconfig

You should now change into the Bugzilla directory and run
checksetup.pl, without any parameters:

checksetup.pl

checksetup.pl will write out a file called localconfig.
This file contains the default settings for a number of
Bugzilla parameters, the most important of which are the group your web
server runs as, and information on how to connect to your database.

Load this file in your editor. You will need to check/change $db_driver
and $db_pass, which are respectively the type of the database you are
using and the password for the bugs database user you have created.
$db_driver can be either mysql, Pg (PostgreSQL), Oracle or
Sqlite. All values are case sensitive.

Set the value of $webservergroup to the group your web server runs as.

	Fedora/Red Hat: apache

	Debian/Ubuntu: www-data

	Mac OS X: _www

	Windows: ignore this setting; it does nothing

The other options in the localconfig file are documented by their
accompanying comments. If you have a non-standard database setup, you may
need to change one or more of the other $db_* parameters.

Note

If you are using Oracle, $db_name should be set to
the SID name of your database (e.g. XE if you are using Oracle XE).

 3.4. Mac OS X

3.4. Mac OS X

Note

The Bugzilla team has very little Mac expertise and we’ve not been
able to do a successful install of the latest version. We got
close, though. If you’ve managed it, tell us how and we can update
these docs!

 3.5. Web Server

3.5. Web Server

Bugzilla requires a web server to run CGI scripts. It supports the following:

	3.5.1. Apache

	3.5.2. Apache on Windows

	3.5.3. Microsoft IIS

This documentation undoubtedly has bugs; if you find some, please file
them here [https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla&component=Documentation].

 3.5.1. Apache

3.5.1. Apache

You have two options for running Bugzilla under Apache - mod_cgi (the
default) and mod_perl. mod_perl is faster but takes more resources. You
should probably only consider mod_perl if your Bugzilla is going to be heavily
used.

These instructions require editing the Apache configuration file, which is:

	Fedora/Red Hat: /etc/httpd/conf/httpd.conf

	Debian/Ubuntu: /etc/apache2/apache2.conf

	Mac OS X: /etc/apache2/httpd.conf

Alternatively, on Debian or Ubuntu, you can instead put the below code into a
separate file in the directory /etc/apache2/sites-enabled/.

In these instructions, when asked to restart Apache, the command is:

sudo apachectl start

(or run it as root if your OS installation does not use sudo).

3.5.1.1. Securing Apache

When external systems interact with Bugzilla via webservices
(REST/XMLRPC/JSONRPC) they include the user’s credentials as part of the URL
(in the “query string”). Therefore, to avoid storing passwords in clear text
on the server we recommend configuring Apache to not include the query string
in its log files.

	Edit the Apache configuration file (see above).

	Find the following line in the above mentioned file, which defines the
logging format for vhost_combined:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined

	Replace %r with %m %U.

	Restart Apache.

3.5.1.2. Apache with mod_cgi

To configure your Apache web server to work with Bugzilla while using
mod_cgi, do the following:

	Edit the Apache configuration file (see above).

	Create a <Directory> directive that applies to the location
of your Bugzilla installation. In this example, Bugzilla has
been installed at /var/www/html/bugzilla. On Mac OS X, use
/Library/WebServer/Documents/bugzilla.

<Directory /var/www/html/bugzilla>
 AddHandler cgi-script .cgi
 Options +ExecCGI +FollowSymLinks
 DirectoryIndex index.cgi index.html
 AllowOverride All
</Directory>

These instructions allow Apache to run .cgi files found within the Bugzilla
directory; instructs the server to look for a file called index.cgi
or, if not found, index.html if someone only types the directory name
into the browser; and allows Bugzilla’s .htaccess files to override
some global permissions.

On some Linux distributions you will need to enable the Apache CGI
module. On Debian/Ubuntu, this is done with:

sudo a2enmod cgi

If you find that the webserver is returning the Perl code as text rather
than executing it, then this is the problem.

3.5.1.3. Apache with mod_perl

Some configuration is required to make Bugzilla work with Apache
and mod_perl.

Note

It is not known whether anyone has even tried mod_perl on Mac OS X.

 3.5.2. Apache on Windows

3.5.2. Apache on Windows

Bugzilla supports all versions of Apac