BMO Documentation

The BMO Team

Sep 14, 2023

About This Documentation

User Guide

Administration Guide

Integration and Customization Guide

WebService API Reference

CONTENTS

21
51

61

CHAPTER
ONE

ABOUT THIS DOCUMENTATION

This is the documentation for version 4.2 of Bugzilla, a bug-tracking system from Mozilla. Bugzilla is an enterprise-
class piece of software that tracks millions of bugs and issues for thousands of organizations around the world.

The most current version of this document can always be found on the Bugzilla website.

1.1 Evaluating Bugzilla

If you want to try out Bugzilla to see if it meets your needs, you can do so on Mozilla’s Bugzilla (BMO) test server,
though it comes with various Mozilla-specific customizations. The easiest way to explore the admin tools and more is
running a minimum local copy of BMO using Vagrant or Docker. We are not offering any online vanilla test environ-
ment at this time.

The Bugzilla FAQ may also be helpful, as it answers a number of questions people sometimes have about whether
Bugzilla is for them.

1.2 Getting More Help

If this document does not answer your questions, we run a Mozilla forum which can be accessed as a newsgroup,
mailing list, or over the web as a Google Group. Please search it first, and then ask your question there.

If you need a guaranteed response, commercial support is available for Bugzilla from a number of people and organi-
zations.

1.3 Document Conventions

This document uses the following conventions:

Warning: This is a warning—something you should be aware of.

Note: This is just a note, for your information.

A filename or a path to a filename is displayed like this: /path/to/filename.ext
A command to type in the shell is displayed like this: command --arguments

A sample of code is illustrated like this:

https://www.bugzilla.org/docs/
https://bugzilla-dev.allizom.org/
https://github.com/mozilla-bteam/bmo/blob/master/README.rst
https://wiki.mozilla.org/Bugzilla:FAQ
https://www.mozilla.org/about/forums/#support-bugzilla
https://groups.google.com/forum/#!forum/mozilla.support.bugzilla
https://www.bugzilla.org/support/consulting.html

BMO Documentation

First Line of Code
Second Line of Code

This documentation is maintained in reStructured Text format using the Sphinx documentation system. It has recently
been rewritten, so it undoubtedly has bugs. Please file any you find, in the Bugzilla Documentation component in
Mozilla’s installation of Bugzilla. If you also want to make a patch, that would be wonderful. Changes are best
submitted as diffs, attached to a bug. There is a Style Guide to help you write any new text and markup.

1.4 License

Bugzilla is free and open source software, which means (among other things) that you can download it, install it, and
run it for any purpose whatsoever without the need for license or payment. Isn’t that refreshing?

Bugzilla’s code is made available under the Mozilla Public License 2.0 (MPL), specifically the variant which is Incom-
patible with Secondary Licenses. However, again, if you only want to install and run Bugzilla, you don’t need to worry
about that; it’s only relevant if you redistribute the code or any changes you make.

Bugzilla’s documentation is made available under the Creative Commons CC-BY-SA International License 4.0, or any
later version.

1.5 Credits

The people listed below have made significant contributions to the creation of this documentation:

Andrew Pearson, Ben FrantzDale, Byron Jones, Dave Lawrence, Dave Miller, Dawn Endico, Eric Hanson, Gervase
Markham, Jacob Steenhagen, Joe Robins, Kevin Brannen, Martin Wulffeld, Matthew P. Barnson, Ron Teitelbaum,
Shane Travis, Spencer Smith, Tara Hernandez, Terry Weissman, Vlad Dascalu, Zach Lipton.

This documentation undoubtedly has bugs; if you find some, please file them here.

2 Chapter 1. About This Documentation

http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://www.sphinx-doc.org/
https://bugzilla.mozilla.org/enter_bug.cgi?product=Bugzilla;component=Documentation
http://www.gnu.org/philosophy/free-sw.html
http://opensource.org/osd
http://www.mozilla.org/MPL/2.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

CHAPTER
TWO

USER GUIDE

2.1 Creating an Account

If you want to use a particular installation of Bugzilla, first you need to create an account. Ask the administrator
responsible for your installation for the URL you should use to access it. If you're test-driving Bugzilla, you can use
one of the installations on Mozilla’s Bugzilla (BMO) test server.

The process of creating an account is similar to many other websites.

1. On the home page, click the New Account link in the header. Enter your email address, then click the Send
button.

Note: If the New Account link is not available, this means that the administrator of the installation has disabled
self-registration. Speak to the administrator to find out how to get an account.

2. Within moments, you should receive an email to the address you provided, which contains your login name
(generally the same as the email address), and a URL to click to confirm your registration.

3. Once you confirm your registration, Bugzilla will ask you your real name (optional, but recommended) and ask
you to choose a password. Depending on how your Bugzilla is configured, there may be minimum complexity
requirements for the password.

4. Now all you need to do is to click the Log In link in the header or footer, enter your email address and the password
you just chose into the login form, and click the Log in button.

You are now logged in. Bugzilla uses cookies to remember you are logged in, so, unless you have cookies disabled or
your IP address changes, you should not have to log in again during your session.

This documentation undoubtedly has bugs; if you find some, please file them here.

2.2 Filing a Bug

2.2.1 Reporting a New Bug

Years of bug writing experience has been distilled for your reading pleasure into the Bug report writing guidelines.
While some of the advice is Mozilla-specific, the basic principles of reporting Reproducible, Specific bugs and isolat-
ing the Product you are using, the Version of the Product, the Component which failed, the Hardware Platform, and
Operating System you were using at the time of the failure go a long way toward ensuring accurate, responsible fixes
for the bug that bit you.

https://bugzilla-dev.allizom.org/
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://developer.mozilla.org/docs/Mozilla/QA/Bug_writing_guidelines

BMO Documentation

Note: If you want to file a test bug to see how Bugzilla works, you can do so on Mozilla’s Bugzilla (BMO) test server.
Please don’t do it on any production Bugzilla installation.

The procedure for filing a bug is as follows:
1. Click the New link available in the header or footer of pages, or the File a Bug link on the home page.
2. First, you have to select the product in which you found a bug.

3. You now see a form where you can specify the component (part of the product which is affected by the bug you
discovered; if you have no idea, just select General if such a component exists), the version of the program you
were using, the operating system and platform your program is running on and the severity of the bug (if the bug
you found crashes the program, it’s probably a major or a critical bug; if it’s a typo somewhere, that’s something
pretty minor; if it’s something you would like to see implemented, then that’s an enhancement).

4. You also need to provide a short but descriptive summary of the bug you found. “My program is crashing all the
time” is a very poor summary and doesn’t help developers at all. Try something more meaningful or your bug
will probably be ignored due to a lack of precision. In the Description, give a detailed list of steps to reproduce
the problem you encountered. Try to limit these steps to a minimum set required to reproduce the problem. This
will make the life of developers easier, and the probability that they consider your bug in a reasonable timeframe
will be much higher.

Note: Try to make sure that everything in the Summary is also in the Description. Summaries are often updated
and this will ensure your original information is easily accessible.

5. As you file the bug, you can also attach a document (testcase, patch, or screenshot of the problem).

6. Depending on the Bugzilla installation you are using and the product in which you are filing the bug, you can
also request developers to consider your bug in different ways (such as requesting review for the patch you just
attached, requesting your bug to block the next release of the product, and many other product-specific requests).

7. Now is a good time to read your bug report again. Remove all misspellings; otherwise, your bug may not be found
by developers running queries for some specific words, and so your bug would not get any attention. Also make
sure you didn’t forget any important information developers should know in order to reproduce the problem, and
make sure your description of the problem is explicit and clear enough. When you think your bug report is ready
to go, the last step is to click the Submit Bug button to add your report into the database.

2.2.2 Clone an Existing Bug

Bugzilla allows you to “clone” an existing bug. The newly created bug will inherit most settings from the old bug. This
allows you to track similar concerns that require different handling in a new bug. To use this, go to the bug that you
want to clone, then click the Clone This Bug link on the bug page. This will take you to the Enter Bug page that is filled
with the values that the old bug has. You can then change the values and/or text if needed.

This documentation undoubtedly has bugs; if you find some, please file them here.

4 Chapter 2. User Guide

https://bugzilla-dev.allizom.org/
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

2.3 Understanding a Bug

The core of Bugzilla is the screen which displays a particular bug. Note that the labels for most fields are hyperlinks;
clicking them will take you to context-sensitive help on that particular field. Fields marked * may not be present on
every installation of Bugzilla.

Summary:
A one-sentence summary of the problem, displayed in the header next to the bug number.

Status (and Resolution):
These define exactly what state the bug is in—from not even being confirmed as a bug, through to being fixed
and the fix confirmed by Quality Assurance. The different possible values for Status and Resolution on your
installation should be documented in the context-sensitive help for those items.

Alias:
A unique short text name for the bug, which can be used instead of the bug number.

Product and Component:
Bugs are divided up by Product and Component, with a Product having one or more Components in it.

Version:
The “Version” field usually contains the numbers or names of released versions of the product. It is used to
indicate the version(s) affected by the bug report.

Hardware (Platform and OS):
These indicate the computing environment where the bug was found.

Importance (Priority and Severity):
The Priority field is used to prioritize bugs, either by the assignee, or someone else with authority to direct their
time such as a project manager. It’s a good idea not to change this on other people’s bugs. The default values are
P1 to P5.

The Severity field indicates how severe the problem is—from blocker (“application unusable”) to trivial (“minor
cosmetic issue”). You can also use this field to indicate whether a bug is an enhancement request.

*Target Milestone:
A future version by which the bug is to be fixed. e.g. The Bugzilla Project’s milestones for future Bugzilla
versions are 4.4, 5.0, 6.0, etc. Milestones are not restricted to numbers, though—you can use any text strings,
such as dates.

Assigned To:
The person responsible for fixing the bug.

*QA Contact:
The person responsible for quality assurance on this bug.

URL:
A URL associated with the bug, if any.

*Whiteboard:
A free-form text area for adding short notes and tags to a bug.

Keywords:
The administrator can define keywords which you can use to tag and categorize bugs—e.g. crash or
regression.

Personal Tags:
Unlike Keywords which are global and visible by all users, Personal Tags are personal and can only be viewed
and edited by their author. Editing them won’t send any notifications to other users. Use them to tag and keep
track of sets of bugs that you personally care about, using your own classification system.

2.3. Understanding a Bug 5

BMO Documentation

Dependencies (Depends On and Blocks):
If this bug cannot be fixed unless other bugs are fixed (depends on), or this bug stops other bugs being fixed
(blocks), their numbers are recorded here.

Clicking the Dependency tree link shows the dependency relationships of the bug as a tree structure. You can
change how much depth to show, and you can hide resolved bugs from this page. You can also collapse/expand
dependencies for each non-terminal bug on the tree view, using the [-]/[+] buttons that appear before the summary.

Opened:
The person who filed the bug, and the date and time they did it.

Updated:
The date and time the bug was last changed.

CC List:
A list of people who get mail when the bug changes, in addition to the Reporter, Assignee and QA Contact (if
enabled).

Ignore Bug Mail:
Set this if you want never to get bugmail from this bug again. See also Email Preferences.

*See Also:
Bugs, in this Bugzilla, other Bugzillas, or other bug trackers, that are related to this one.

Flags:
A flag is a kind of status that can be set on bugs or attachments to indicate that the bugs/attachments are in a
certain state. Each installation can define its own set of flags that can be set on bugs or attachments. See Flags.

*Time Tracking:
This form can be used for time tracking. To use this feature, you have to be a member of the group specified by
the timetrackinggroup parameter. See Time Tracking for more information.

Orig. Est.:
This field shows the original estimated time.

Current Est.:
This field shows the current estimated time. This number is calculated from Hours Worked and Hours
Left.

Hours Worked:
This field shows the number of hours worked.

Hours Left:
This field shows the Current Est. - Hours Worked. This value + Hours Worked will become the new
Current Est.

% Complete:
This field shows what percentage of the task is complete.

Gain:
This field shows the number of hours that the bug is ahead of the Orig. Est..

Deadline:
This field shows the deadline for this bug.

Attachments:
You can attach files (e.g. test cases or patches) to bugs. If there are any attachments, they are listed in this section.
See Attachments for more information.

Additional Comments:
You can add your two cents to the bug discussion here, if you have something worthwhile to say.

6 Chapter 2. User Guide

BMO Documentation

2.3.1 Flags

Flags are a way to attach a specific status to a bug or attachment, either + or -. The meaning of these symbols depends
on the name of the flag itself, but contextually they could mean pass/fail, accept/reject, approved/denied, or even a
simple yes/no. If your site allows requestable flags, then users may set a flag to ? as a request to another user that they
look at the bug/attachment and set the flag to its correct status.

A set flag appears in bug reports and on “edit attachment” pages with the abbreviated username of the user who set the
flag prepended to the flag name. For example, if Jack sets a “review” flag to +, it appears as Jack: review [+].

A requested flag appears with the user who requested the flag prepended to the flag name and the user who has been
requested to set the flag appended to the flag name within parentheses. For example, if Jack asks Jill for review, it
appears as Jack: review [? | (Jill).

You can browse through open requests made of you and by you by selecting My Requests from the footer. You can also
look at open requests limited by other requesters, requestees, products, components, and flag names. Note that you can
use ‘-’ for requestee to specify flags with no requestee set.

A Simple Example
A developer might want to ask their manager, “Should we fix this bug before we release version 2.0?”” They might want
to do this for a lor of bugs, so they decide to streamline the process. So:

1. The Bugzilla administrator creates a flag type called blocking2.0 for bugs in your product. It shows up on the
Show Bug screen as the text blocking2.0 with a drop-down box next to it. The drop-down box contains four
values: an empty space, 7, -, and +.

2. The developer sets the flag to ?.
3. The manager sees the blocking2.0 flag with a ? value.

4. If the manager thinks the feature should go into the product before version 2.0 can be released, they set the flag
to +. Otherwise, they set it to -.

5. Now, every Bugzilla user who looks at the bug knows whether or not the bug needs to be fixed before release of
version 2.0.

About Flags

Flags can have four values:

?
A user is requesting that a status be set. (Think of it as ‘A question is being asked’.)
The status has been set negatively. (The question has been answered no.)

The status has been set positively. (The question has been answered yes.)

unset actually shows up as a blank space. This just means that nobody has expressed an opinion (or asked
someone else to express an opinion) about the matter covered by this flag.

2.3. Understanding a Bug 7

BMO Documentation

Flag Requests

If a flag has been defined as requestable, and a user has enough privileges to request it (see below), the user can set the
flag’s status to ?. This status indicates that someone (a.k.a. “the requester”) is asking someone else to set the flag to
either + or -.

If a flag has been defined as specifically requestable, a text box will appear next to the flag into which the requester
may enter a Bugzilla username. That named person (a.k.a. “the requestee”) will receive an email notifying them of the
request, and pointing them to the bug/attachment in question.

If a flag has not been defined as specifically requestable, then no such text box will appear. A request to set this flag
cannot be made of any specific individual; these requests are open for anyone to answer. In Bugzilla this is known as
“asking the wind”. A requester may ask the wind on any flag simply by leaving the text box blank.

Attachment Flags

There are two types of flags: bug flags and attachment flags.
Attachment flags are used to ask a question about a specific attachment on a bug.

Many Bugzilla installations use this to request that one developer review another developer’s code before they check
it in. They attach the code to a bug report, and then set a flag on that attachment called review to review? re-
viewer@example.com. reviewer @example.com is then notified by email that they have to check out that attachment
and approve it or deny it.

For a Bugzilla user, attachment flags show up in three places:

1. On the list of attachments in the Show Bug screen, you can see the current state of any flags that have been set to
?, +, or -. You can see who asked about the flag (the requester), and who is being asked (the requestee).

2. When you edit an attachment, you can see any settable flag, along with any flags that have already been set. The
Edit Attachment screen is where you set flags to ?, -, +, or unset them.

3. Requests are listed in the Request Queue, which is accessible from the My Requests link (if you are logged in) or
Requests link (if you are logged out) visible on all pages.

Bug Flags
Bug flags are used to set a status on the bug itself. You can see Bug Flags in the Show Bug and Requests screens, as
described above.

Only users with enough privileges (see below) may set flags on bugs. This doesn’t necessarily include the assignee,
reporter, or users with the editbugs permission.

This documentation undoubtedly has bugs; if you find some, please file them here.

8 Chapter 2. User Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

2.4 Editing a Bug

2.4.1 Attachments

Attachments are used to attach relevant files to bugs - patches, screenshots, test cases, debugging aids or logs, or
anything else binary or too large to fit into a comment.

You should use attachments, rather than comments, for large chunks of plain text data, such as trace, debugging output
files, or log files. That way, it doesn’t bloat the bug for everyone who wants to read it, and cause people to receive large,
useless mails.

You should make sure to trim screenshots. There’s no need to show the whole screen if you are pointing out a single-
pixel problem.

Bugzilla stores and uses a Content-Type for each attachment (e.g. text/html). To download an attachment as a different
Content-Type (e.g. application/xhtml+xml), you can override this using a ‘content_type’ parameter on the URL, e.g.
&content_type=text/plain.

Also, you can enter the URL pointing to the attachment instead of uploading the attachment itself. For example, this is
useful if you want to point to an external application, a website or a very large file.

It’s also possible to create an attachment by pasting text directly in a text field; Bugzilla will convert it into an attachment.
This is pretty useful when you are copying and pasting, to avoid the extra step of saving the text in a temporary file.

2.4.2 Flags

To set a flag, select either + or - from the drop-down menu next to the name of the flag in the Flags list. The meaning
of these values are flag-specific and thus cannot be described in this documentation, but by way of example, setting a
flag named review + may indicate that the bug/attachment has passed review, while setting it to - may indicate that the
bug/attachment has failed review.

To unset a flag, click its drop-down menu and select the blank value. Note that marking an attachment as obsolete
automatically cancels all pending requests for the attachment.

If your administrator has enabled requests for a flag, request a flag by selecting ? from the drop-down menu and then
entering the username of the user you want to set the flag in the text field next to the menu.

2.4.3 Time Tracking

Users who belong to the group specified by the timetrackinggroup parameter have access to time-related fields.
Developers can see deadlines and estimated times to fix bugs, and can provide time spent on these bugs. Users who do
not belong to this group can only see the deadline but not edit it. Other time-related fields remain invisible to them.

At any time, a summary of the time spent by developers on bugs is accessible either from bug lists when clicking the
Time Summary button or from individual bugs when clicking the Summarize time link in the time tracking table.
The summarize_time.cgi page lets you view this information either per developer or per bug and can be split on a
month basis to have greater details on how time is spent by developers.

As soon as a bug is marked as RESOLVED, the remaining time expected to fix the bug is set to zero. This lets QA
people set it again for their own usage, and it will be set to zero again when the bug is marked as VERIFIED.

2.4. Editing a Bug 9

BMO Documentation

2.4.4 Life Cycle of a Bug

The life cycle of a bug, also known as workflow, is customizable to match the needs of your organization (see Workflow).
The image below contains a graphical representation of the default workflow using the default bug statuses. If you wish
to customize this image for your site, the diagram file is available in Dia’s native XML format.

Bugis fled by a nonempowerad
user in a product where the
UNCONFIRMED state is enablad

Eug determined
to be present
UNCONFIRMED

CONFIRMED Ji

Developer is working
on the bug

De veloper stops

- .ummmm.u}k‘ /

Fix checked in
Possible resolutions:

-
:

-

-

.

®

:

H work on bug [:

.

E IN PR[][;RESS LLLLLL LI L] L
L] —_—

.

-

-

FIXED i

IIl||:-1III ﬁ?&m E.:ﬁi'j-.n:;: i:fff: n e
RESOLVED

WORKSFORME L J€

NVALID i Bug is not fixable

{e.g because itis invaid)

E QA venfies that
: the solution works

Bug is mopensad, :
was newer confrmed :

................................... VERIFIED);

This documentation undoubtedly has bugs; if you find some, please file them here.

2.5 Finding Bugs

Bugzilla has a number of different search options.

Note: Bugzilla queries are case-insensitive and accent-insensitive when used with either MySQL or Oracle databases.
When using Bugzilla with PostgreSQL, however, some queries are case sensitive. This is due to the way PostgreSQL
handles case and accent sensitivity.

10 Chapter 2. User Guide

../../images/bzLifecycle.xml
http://www.gnome.org/projects/dia
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

2.5.1 Quicksearch

Quicksearch is a single-text-box query tool. You’ll find it in Bugzilla’s header or footer.

Quicksearch uses metacharacters to indicate what is to be searched. For example, typing
foo|bar

into Quicksearch would search for “foo” or “bar” in the summary and status whiteboard of a bug; adding
:BazProduct

would search only in that product.

You can also use it to go directly to a bug by entering its number or its alias.

2.5.2 Simple Search

Simple Search is good for finding one particular bug. It works like internet search engines - just enter some keywords
and off you go.

2.5.3 Advanced Search

The Advanced Search page is used to produce a list of all bugs fitting exact criteria. You can play with it on Mozilla’s
Bugzilla (BMO) test server.

Advanced Search has controls for selecting different possible values for all of the fields in a bug, as described above.
For some fields, multiple values can be selected. In those cases, Bugzilla returns bugs where the content of the field
matches any one of the selected values. If none is selected, then the field can take any value.

After a search is run, you can save it as a Saved Search, which will appear in the page footer. If you are in the group
defined by the “querysharegroup” parameter, you may share your queries with other users; see Saved Searches for more
details.

2.5.4 Custom Search

Highly advanced querying is done using the Custom Search feature of the Advanced Search page.

The search criteria here further restrict the set of results returned by a query, over and above those defined in the fields
at the top of the page. It is thereby possible to search for bugs based on elaborate combinations of criteria.

The simplest custom searches have only one term. These searches permit the selected field to be compared using a
selectable operator to a specified value. Much of this could be reproduced using the standard fields. However, you
can then combine terms using “Match All” (AND) or “Match Any” (OR), using groups for combining and priority, in
order to construct searches of almost arbitrary complexity.

There are three fields in each row (known as a “term’) of a custom search:
o Field: the name of the field being searched
* Operator: the comparison operator
* Value: the value to which the field is being compared

The list of available fields contains all the fields defined for a bug, including any custom fields, and then also some
pseudo-fields like Assignee Real Name, Days Since Bug Changed, Time Since Assignee Touched and other things it
may be useful to search on.

2.5. Finding Bugs 11

https://bugzilla-dev.allizom.org/query.cgi?format=advanced
https://bugzilla-dev.allizom.org/query.cgi?format=advanced

BMO Documentation

There are a wide range of operators available, not all of which may make sense for a particular field. There are various
string-matching operations (including regular expressions), numerical comparisons (which also work for dates), and
also the ability to search for change information—when a field changed, what it changed from or to, and who did it.
There are special operators for is empty and is not empty, because Bugzilla can’t tell the difference between a value
field left blank on purpose and one left blank by accident.

You can have an arbitrary number of rows and groups, and rearrange them by dragging and dropping the handle on
each item. You can even duplicate an item by holding the Alt key while dragging it. The radio buttons above them
define how they relate — Match All, Match All (Same Field) or Match Any. The difference between the first and second
can be illustrated with a comment search. If you have a search:

Comment contains the string "Fred"
Comment contains the string "Barney"

then under the first regime (match separately) the search would return bugs where “Fred” appeared in one comment
and “Barney” in the same or any other comment, whereas under the second (match against the same field), both strings
would need to occur in exactly the same comment.

Negation

At first glance, negation seems redundant. Rather than searching for:

NOT (summary contains the string "foo")

one could search for:

summary does not contain the string "foo"

However, the search:

CC does not contain the string "@mozilla.org"

would find every bug where anyone on the CC list did not contain “@mozilla.org” while:

NOT (CC contains the string "@mozilla.org")

would find every bug where there was nobody on the CC list who did contain the string. Similarly, the use of negation
also permits complex expressions to be built using terms OR’d together and then negated. Negation permits queries
such as:

NOT ((product equals "Update")
OR
(component equals "Documentation”)

)

to find bugs that are neither in the Update product or in the Documentation component or:

NOT ((commenter equals
OR
(component equals "Documentation”)

)

ssignee%")

to find non-documentation bugs on which the assignee has never commented.

12 Chapter 2. User Guide

BMO Documentation

Pronoun Substitution

Sometimes, a query needs to compare a user-related field (such as Reporter) with a role-specific user (such as the user
running the query or the user to whom each bug is assigned). For example, you may want to find all bugs that are
assigned to the person who reported them.

When the Custom Search operator is either equals or notequals, the value can be %reporter%, %triageowner,
%assignee¥%, %qacontact%, %user¥% or %self%. These are known as “pronouns”. The %user% pronoun and its alias
%self% refer to the user who is executing the query (that’s you) or, in the case of whining reports, the user who will
be the recipient of the report. The %reporter%, %triageowner%, %assignee¥% and %qacontact% pronouns refer to
the corresponding fields in the bug.

This feature also lets you search by a user’s group memberships. If the operator is either equals, notequals or anyexact,
you can search for whether a user belongs (or not) to the specified group. The group name must be entered using
“Yogroup.foo%” syntax, where “foo” is the group name. So if you are looking for bugs reported by any user being in
the “editbugs” group, then you can use:

reporter equals roup.editbugs%"

Searching for Bugs Restricted to Groups
When administrators set up products, they can establish one or more groups bugs in the product can be associated with.
If a bug is associated with a group then only users who are members of the group can see them.
This restriction is mostly used for security-related bugs, or internal tickets.
In order to search for bugs restricted to a group, you must be a member of the group.
Visit the Permissions page to find the groups you belong to, then search using the clause
Group is equal to “%ogroup.groupname%o”

to list the bugs restricted to groupname.

Searching on Relative Dates

In order to conduct searches over a window of time, you can use relative dates in query values.
The relative date values are of the form nnV where nn is a positive or negative integer and V is one of:
* h — for hours
e d —for days
* w — for weeks
¢ m — for months
* y—for years
A value of /d means 24 hours in the future from the time of the search.
A value of -1d means 24 hours in the past from the time of the search.
These relative values can be used when the Custom Search operator is one of:
* is less than
* is less than or equal to

* is greater than

2.5. Finding Bugs 13

https://bugzilla.mozilla.org/userprefs.cgi?tab=permissions

BMO Documentation

* is greater than or equal to
and the field compared is a Datetime type.
To find bugs opened in the last 24 hours, you could search on:
Opened is less than “-1d”
To find bugs opened during the current day (UTC),
Opened is less than “-0ds”
Appending s to a relative date means start of.
You may also use relative dates for when a field changed. In the Custom Search operator that would be
* changed after
* changed before
To find bugs whose priority changed in the last seven days, search on:
Priority changed after “-1w”
You can also search for a change to a particular value over a relative date using the Search by Change History operator.
To find the bugs RESOLVED as WONTFIX in the current year to date, you would search on
Resolution changed to “WONTFIX” between “-0ys” and “NOW”

2.5.5 Bug Lists

The result of a search is a list of matching bugs.

The format of the list is configurable. For example, it can be sorted by clicking the column headings. Other useful
features can be accessed using the links at the bottom of the list:

Long Format:
this gives you a large page with a non-editable summary of the fields of each bug.

XML (icon):
get the buglist in an XML format.

CSYV (icon):
get the buglist as comma-separated values, for import into e.g. a spreadsheet.

Feed (icon):
get the buglist as an Atom feed. Copy this link into your favorite feed reader. If you are using Firefox, you can
also save the list as a live bookmark by clicking the live bookmark icon in the status bar. To limit the number of
bugs in the feed, add a limit=n parameter to the URL.

iCalendar (icon):
Get the buglist as an iCalendar file. Each bug is represented as a to-do item in the imported calendar.

Change Columns:
change the bug attributes which appear in the list.

Change Several Bugs At Once:
If your account is sufficiently empowered, and more than one bug appears in the bug list, this link is displayed
and lets you easily make the same change to all the bugs in the list - for example, changing their assignee.

Send Mail to Bug Assignees:
If more than one bug appear in the bug list and there are at least two distinct bug assignees, this links is displayed
which lets you easily send a mail to the assignees of all bugs on the list.

14 Chapter 2. User Guide

BMO Documentation

Edit Search:
If you didn’t get exactly the results you were looking for, you can return to the Query page through this link and
make small revisions to the query you just made so you get more accurate results.

Remember Search As:
You can give a search a name and remember it; the name will appear as an auto-completion in the search field
in the header of Bugzilla pages giving you quick access to run it again later.

This documentation undoubtedly has bugs; if you find some, please file them here.

2.6 Reports and Charts

As well as the standard buglist, Bugzilla has two more ways of viewing sets of bugs. These are the reports (which give
different views of the current state of the database) and charts (which plot the changes in particular sets of bugs over
time).

2.6.1 Reports

A report is a view of the current state of the bug database.

You can run either an HTML-table-based report, or a graphical line/pie/bar-chart-based one. The two have different
pages to define them but are close cousins - once you’ve defined and viewed a report, you can switch between any of
the different views of the data at will.

Both report types are based on the idea of defining a set of bugs using the standard search interface and then choosing
some aspect of that set to plot on the horizontal and/or vertical axes. You can also get a form of 3-dimensional report
by choosing to have multiple images or tables.

So, for example, you could use the search form to choose “all bugs in the WorldControl product” and then plot their
severity against their component to see which component has had the largest number of bad bugs reported against it.

Once you’ve defined your parameters and hit Generate Report, you can switch between HTML, CSV, Bar, Line and
Pie. (Note: Pie is only available if you didn’t define a vertical axis, as pie charts don’t have one.) The other controls
are fairly self-explanatory; you can change the size of the image if you find text is overwriting other text, or the bars are
too thin to see.

2.6.2 Charts

A chart is a view of the state of the bug database over time.

Bugzilla currently has two charting systems - Old Charts and New Charts. Old Charts have been part of Bugzilla for a
long time; they chart each status and resolution for each product, and that’s all. They are deprecated, and going away
soon - we won’t say any more about them. New Charts are the future - they allow you to chart anything you can define
as a search.

Note: Both charting forms require the administrator to set up the data-gathering script. If you can’t see any charts,
ask them whether they have done so.

An individual line on a chart is called a data set. All data sets are organized into categories and subcategories. The data
sets that Bugzilla defines automatically use the Product name as a Category and Component names as Subcategories,
but there is no need for you to follow that naming scheme with your own charts if you don’t want to.

2.6. Reports and Charts 15

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Data sets may be public or private. Everyone sees public data sets in the list, but only their creator sees private data
sets. Only administrators can make data sets public. No two data sets, even two private ones, can have the same set
of category, subcategory and name. So if you are creating private data sets, one idea is to have the Category be your
username.

Creating Charts

You create a chart by selecting a number of data sets from the list and pressing Add To List for each. In the List Of
Data Sets To Plot, you can define the label that data set will have in the chart’s legend and also ask Bugzilla to Sum a
number of data sets (e.g. you could Sum data sets representing RESOLVED, VERIFIED and CLOSED in a particular
product to get a data set representing all the resolved bugs in that product.)

If you’ve erroneously added a data set to the list, select it using the checkbox and click Remove. Once you add more
than one data set, a Grand Total line automatically appears at the bottom of the list. If you don’t want this, simply
remove it as you would remove any other line.

You may also choose to plot only over a certain date range, and to cumulate the results, that is, to plot each one using
the previous one as a baseline so the top line gives a sum of all the data sets. It’s easier to try than to explain :-)

Once a data set is in the list, you can also perform certain actions on it. For example, you can edit the data set’s
parameters (name, frequency etc.) if it’s one you created or if you are an administrator.

Once you are happy, click Chart This List to see the chart.

Creating New Data Sets

You may also create new data sets of your own. To do this, click the create a new data set link on the Create Chart
page. This takes you to a search-like interface where you can define the search that Bugzilla will plot. At the bottom
of the page, you choose the category, sub-category and name of your new data set.

If you have sufficient permissions, you can make the data set public, and reduce the frequency of data collection to less
than the default of seven days.

This documentation undoubtedly has bugs; if you find some, please file them here.

2.7 Pro Tips

This section distills some Bugzilla tips and best practices that have been developed.

2.7.1 Autolinkification

Bugzilla comments are plain text - so typing <U> will produce less-than, U, greater-than rather than underlined text.
However, Bugzilla will automatically make hyperlinks out of certain sorts of text in comments. For example, the text
https://www.bugzilla.org will be turned into a link: https://www.bugzilla.org. Other strings which get linkified
in the obvious manner are:

* bug 12345
* bugs 123, 456, 789
e comment 7

e comments 1, 2, 3, 4

16 Chapter 2. User Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://www.bugzilla.org

BMO Documentation

bug 23456, comment 53

* attachment 4321

* mailto:george @example.com
* george@example.com

* ftp://ftp.mozilla.org

* Most other sorts of URL

A corollary here is that if you type a bug number in a comment, you should put the word “bug” before it, so it gets
autolinkified for the convenience of others.

2.7.2 Comments

If you are changing the fields on a bug, only comment if either you have something pertinent to say or Bugzilla requires
it. Otherwise, you may spam people unnecessarily with bugmail. To take an example: a user can set up their account
to filter out messages where someone just adds themselves to the CC field of a bug (which happens a lot). If you come
along, add yourself to the CC field, and add a comment saying “Adding self to CC”, then that person gets a pointless
piece of mail they would otherwise have avoided.

Don’t use signs in comments. Signing your name (“Bill”) is acceptable, if you do it out of habit, but full mail/news-style
four line ASCII art creations are not.

If you feel a bug you filed was incorrectly marked as a DUPLICATE of another, please question it in your bug, not the
bug it was duped to. Feel free to CC the person who duped it if they are not already CCed.

This documentation undoubtedly has bugs; if you find some, please file them here.

2.8 User Preferences

Once logged in, you can customize various aspects of Bugzilla via the “Preferences” link in the page footer. The
preferences are split into a number of tabs, detailed in the sections below.

2.8.1 General Preferences
This tab allows you to change several default settings of Bugzilla. Administrators have the power to remove preferences
from this list, so you may not see all the preferences available.

Each preference should be self-explanatory.

2.8.2 Email Preferences

This tab allows you to enable or disable email notification on specific events.

In general, users have almost complete control over how much (or how little) email Bugzilla sends them. If you want
to receive the maximum amount of email possible, click the Enable All Mail button. If you don’t want to receive
any email from Bugzilla at all, click the Disable All Mail button.

2.8. User Preferences 17

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Note: A Bugzilla administrator can stop a user from receiving bugmail by clicking the Bugmail Disabled checkbox
when editing the user account. This is a drastic step best taken only for disabled accounts, as it overrides the user’s
individual mail preferences.

There are two global options — Email me when someone asks me to set a flag and Email me when
someone sets a flag I asked for. These define how you want to receive bugmail with regards to flags. Their
use is quite straightforward: enable the checkboxes if you want Bugzilla to send you mail under either of the above
conditions.

If yowd like to set your bugmail to something besides ‘Completely ON” and ‘Completely OFF’, the Field/recipient
specific options table allows you to do just that. The rows of the table define events that can happen to a bug —
things like attachments being added, new comments being made, the priority changing, etc. The columns in the table
define your relationship with the bug - reporter, assignee, QA contact (if enabled) or CC list member.

To fine-tune your bugmail, decide the events for which you want to receive bugmail; then decide if you want to receive it
all the time (enable the checkbox for every column) or only when you have a certain relationship with a bug (enable the
checkbox only for those columns). For example, if you didn’t want to receive mail when someone added themselves to
the CC list, you could uncheck all the boxes in the CC Field Changes line. As another example, if you never wanted
to receive email on bugs you reported unless the bug was resolved, you would uncheck all boxes in the Reporter
column except for the one on the The bug is resolved or verified row.

Note: Bugzilla adds the X-Bugzilla-Reason header to all bugmail it sends, describing the recipient’s relationship
(AssignedTo, Reporter, QAContact, CC, or Voter) to the bug. This header can be used to do further client-side filtering.

Bugzilla has a feature called User Watching. When you enter one or more comma-delineated user accounts (usually
email addresses) into the text entry box, you will receive a copy of all the bugmail those users are sent (security settings
permitting). This powerful functionality enables seamless transitions as developers change projects or users go on
holiday.

Each user listed in the Users watching you field has you listed in their Users to watch list and can get bugmail
according to your relationship to the bug and their Field/recipient specific options setting.

Lastly, you can define a list of bugs on which you no longer wish to receive any email, ever. (You can also add bugs
to this list individually by checking the “Ignore Bug Mail” checkbox on the bug page for that bug.) This is useful for
ignoring bugs where you are the reporter, as that’s a role it’s not possible to stop having.

2.8.3 Saved Searches

On this tab you can view and run any Saved Searches that you have created, and any Saved Searches that other members
of the group defined in the querysharegroup parameter have shared. Saved Searches can be added to the page footer
from this screen. If somebody is sharing a Search with a group they are allowed to assign users to, the sharer may opt
to have the Search show up in the footer of the group’s direct members by default.

18 Chapter 2. User Guide

BMO Documentation

2.8.4 Account Information

On this tab, you can change your basic account information, including your password, email address and real name.
For security reasons, in order to change anything on this page you must type your current password into the Password
field at the top of the page. If you attempt to change your email address, a confirmation email is sent to both the old
and new addresses with a link to use to confirm the change. This helps to prevent account hijacking.

2.8.5 API Keys

API keys allow you to give a “token” to some external software so it can log in to the WebService API as you without
knowing your password. You can then revoke that token if you stop using the web service, and you don’t need to change
your password everywhere.

You can create more than one API key if required. Each API key has an optional description which can help you record
what it is used for.

On this page, you can unrevoke, revoke, make sticky, and change the description of existing API keys for your login. A
revoked key means that it cannot be used. The description is optional and purely for your information.

Sticky API keys may only be used from one IP address, which reduces the risk of the key being leaked. The IP address
is the one the key was last used from. The expected workflow is that the sticky bit will be set once your application (or
script) is setup. The sticky attribute may only be set, it can’t ever be unset.

You can also create a new API key by selecting the checkbox under the ‘New API key’ section of the page.

2.8.6 Permissions

This is a purely informative page which outlines your current permissions on this installation of Bugzilla.

A complete list of permissions in a default install of Bugzilla is below. Your administrator may have defined other
permissions. Only users with editusers privileges can change the permissions of other users.

admin
Indicates user is an Administrator.

bz_canusewhineatothers
Indicates user can configure whine reports for other users.

bz_canusewhines
Indicates user can configure whine reports for self.

bz_quip_moderators
Indicates user can moderate quips.

bz_sudoers
Indicates user can perform actions as other users.

bz_sudo_protect
Indicates user cannot be impersonated by other users.

canconfirm
Indicates user can confirm a bug or mark it a duplicate.

creategroups
Indicates user can create and destroy groups.

editbugs
Indicates user can edit all bug fields.

2.8. User Preferences 19

BMO Documentation

editclassifications
Indicates user can create, destroy and edit classifications.

editcomponents
Indicates user can create, destroy and edit products, components, versions, milestones and flag types.

editkeywords
Indicates user can create, destroy and edit keywords.

editusers
Indicates user can create, disable and edit users.

tweakparams
Indicates user can change Parameters.

This documentation undoubtedly has bugs; if you find some, please file them here.

2.9 Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an extension comes with documentation in the appropri-
ate format, and you build your own copy of the Bugzilla documentation using makedocs. pl, then the documentation
for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the last time you compiled the documentation):

This documentation undoubtedly has bugs; if you find some, please file them here.

This documentation undoubtedly has bugs; if you find some, please file them here.

20 Chapter 2. User Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

CHAPTER
THREE

ADMINISTRATION GUIDE

For those with admin privileges, Bugzilla can be administered using the Administration link in the header. The admin-
istrative controls are divided into several sections:

3.1 Parameters

Bugzilla is configured by changing various parameters, accessed from the Parameters link, which is found on the
Administration page. The parameters are divided into several categories, accessed via the menu on the left.

3.1.1 General

maintainer
Email address of the person responsible for maintaining this Bugzilla installation. The address need not be that
of a valid Bugzilla account.

utf8
Use UTF-8 (Unicode) encoding for all text in Bugzilla. Installations where this parameter is set to off should
set it to on only after the data has been converted from existing legacy character encodings to UTF-8, using the
contrib/recode.pl script.

Note: If you turn this parameter from off to on, you must re-run checksetup.pl immediately afterward.

announcehtml
Any text in this field will be displayed at the top of every HTML page in this Bugzilla installation. The text is
not wrapped in any tags. For best results, wrap the text in a <p> tag. Any style attributes from the CSS can be
applied. <p class="warning"> makes the text red.

upgrade_notification
Enable or disable a notification on the homepage of this Bugzilla installation when a newer version of Bugzilla
is available. This notification is only visible to administrators. Choose disabled to turn off the notification.
Otherwise, choose which version of Bugzilla you want to be notified about: development_snapshot is the latest
release from the master branch, latest_stable_release is the most recent release available on the most recent stable
branch, and stable_branch_release is the most recent release on the branch this installation is based on.

21

BMO Documentation

3.1.2 Administrative Policies

This page contains parameters for basic administrative functions. Options include whether to allow the deletion of bugs
and users, and whether to allow users to change their email address.

allowbugdeletion
The pages to edit products and components can delete all associated bugs when you delete a product (or com-
ponent). Since that is a pretty scary idea, you have to turn on this option before any such deletions will ever
happen.

allowemailchange
Users can change their own email address through the preferences. Note that the change is validated by emailing
both addresses, so switching this option on will not let users use an invalid address.

allowuserdeletion
The user editing pages are capable of letting you delete user accounts. Bugzilla will issue a warning in case you’d
run into inconsistencies when you’re about to do so, but such deletions still remain scary. So, you have to turn
on this option before any such deletions will ever happen.

last_visit_keep_days
This option controls how many days Bugzilla will remember that users have visited specific bugs.

3.1.3 User Authentication

This page contains the settings that control how this Bugzilla installation will do its authentication. Choose what
authentication mechanism to use (the Bugzilla database, or an external source such as LDAP), and set basic behavioral
parameters. For example, choose whether to require users to login to browse bugs, the management of authentication
cookies, and the regular expression used to validate email addresses. Some parameters are highlighted below.

auth_env_id
Environment variable used by external authentication system to store a unique identifier for each user. Leave it
blank if there isn’t one or if this method of authentication is not being used.

auth_env_email
Environment variable used by external authentication system to store each user’s email address. This is a required
field for environmental authentication. Leave it blank if you are not going to use this feature.

auth_env_realname
Environment variable used by external authentication system to store the user’s real name. Leave it blank if there
isn’t one or if this method of authentication is not being used.

user_info_class
Mechanism(s) to be used for gathering a user’s login information. More than one may be selected. If the first
one returns nothing, the second is tried, and so on. The types are:

* CGI: asks for username and password via CGI form interface.
* Env: info for a pre-authenticated user is passed in system environment variables.

user_verify_class
Mechanism(s) to be used for verifying (authenticating) information gathered by user_info_class. More than one
may be selected. If the first one cannot find the user, the second is tried, and so on. The types are:

* DB: Bugzilla’s built-in authentication. This is the most common choice.

* RADIUS: RADIUS authentication using a RADIUS server. Using this method requires additional param-
eters to be set. Please see RADIUS for more information.

¢ LDAP: LDAP authentication using an LDAP server. Using this method requires additional parameters to
be set. Please see LDAP for more information.

22 Chapter 3. Administration Guide

BMO Documentation

rememberlogin
Controls management of session cookies.

* on - Session cookies never expire (the user has to login only once per browser).

 off - Session cookies last until the users session ends (the user will have to login in each new browser
session).

¢ defaulton/defaultoff - Default behavior as described above, but user can choose whether Bugzilla will re-
member their login or not.

requirelogin
If this option is set, all access to the system beyond the front page will require a login. No anonymous users will
be permitted.

webservice_email_filter
Filter email addresses returned by the WebService API depending on if the user is logged in or not. This works
similarly to how the web UI currently filters email addresses. If requirelogin is enabled, then this parameter has
no effect as users must be logged in to use Bugzilla anyway.

emailregexp
Defines the regular expression used to validate email addresses used for login names. The default attempts to
match fully qualified email addresses (i.e. ‘user@example.com’) in a slightly more restrictive way than what
is allowed in RFC 2822. Another popular value to put here is "[*@]+, which means ‘local usernames, no @
allowed.’

emailregexpdesc
This description is shown to the user to explain which email addresses are allowed by the emailregexp param.

emailsuffix
This is a string to append to any email addresses when actually sending mail to that address. It is useful if you
have changed the emailregexp param to only allow local usernames, but you want the mail to be delivered to
username @my.local.hostname.

createemailregexp
This defines the (case-insensitive) regexp to use for email addresses that are permitted to self-register. The default
(-*) permits any account matching the emailregexp to be created. If this parameter is left blank, no users will be
permitted to create their own accounts and all accounts will have to be created by an administrator.

password_check_on_login
If set, Bugzilla will check that the password meets the current complexity rules and minimum length requirements
when the user logs into the Bugzilla web interface. If it doesn’t, the user would not be able to log in, and will
receive a message to reset their password.

auth_delegation
If set, Bugzilla will allow other websites to request API keys from its own users. See Authentication Delegation
via API Keys.

3.1.4 Attachments

This page allows for setting restrictions and other parameters regarding attachments to bugs. For example, control size
limitations and whether to allow pointing to external files via a URI.

allow_attachment_display
If this option is on, users will be able to view attachments from their browser, if their browser supports the
attachment’s MIME type. If this option is off, users are forced to download attachments, even if the browser is
able to display them.

3.1. Parameters 23

BMO Documentation

If you do not trust your users (e.g. if your Bugzilla is public), you should either leave this option off, or con-
figure and set the attachment_base localconfig variable. Untrusted users may upload attachments that could be
potentially damaging if viewed directly in the browser.

allow_attachment_deletion
If this option is on, administrators will be able to delete the contents of attachments (i.e. replace the attached file
with a O byte file), leaving only the metadata.

maxattachmentsize
The maximum size (in kilobytes) of attachments to be stored in the database. If a file larger than this size is
attached to a bug, Bugzilla will look at the maxlocalattachment parameter to determine if the file can be stored
locally on the web server. If the file size exceeds both limits, then the attachment is rejected. Setting both
parameters to O will prevent attaching files to bugs.

Some databases have default limits which prevent storing larger attachments in the database. E.g. MySQL has a
parameter called max_allowed_packet, whose default varies by distribution. Setting maxattachmentsize higher
than your current setting for this value will produce an error.

maxlocalattachment
The maximum size (in megabytes) of attachments to be stored locally on the web server. If set to a value lower
than the maxattachmentsize parameter, attachments will never be kept on the local filesystem.

Whether you use this feature or not depends on your environment. Reasons to store some or all attachments as
files might include poor database performance for large binary blobs, ease of backup/restore/browsing, or even
filesystem-level deduplication support. However, you need to be aware of any limits on how much data your
webserver environment can store. If in doubt, leave the value at 0.

Note that changing this value does not affect any already-submitted attachments.

3.1.5 Bug Change Policies

Set policy on default behavior for bug change events. For example, choose which status to set a bug to when it is
marked as a duplicate, and choose whether to allow bug reporters to set the priority or target milestone. Also allows
for configuration of what changes should require the user to make a comment, described below.

duplicate_or_move_bug_status
When a bug is marked as a duplicate of another one, use this bug status.

letsubmitterchoosepriority
If this is on, then people submitting bugs can choose an initial priority for that bug. If off, then all bugs initially
have the default priority selected here.

letsubmitterchoosemilestone
If this is on, then people submitting bugs can choose the Target Milestone for that bug. If off, then all bugs
initially have the default milestone for the product being filed in.

musthavemilestoneonaccept
If you are using Target Milestone, do you want to require that the milestone be set in order for a user to set a
bug’s status to IN_PROGRESS?

commenton*
All these fields allow you to dictate what changes can pass without comment and which must have a comment
from the person who changed them. Often, administrators will allow users to add themselves to the CC list,
accept bugs, or change the Status Whiteboard without adding a comment as to their reasons for the change, yet
require that most other changes come with an explanation. Set the “commenton” options according to your site
policy. It is a wise idea to require comments when users resolve, reassign, or reopen bugs at the very least.

Note: It is generally far better to require a developer comment when resolving bugs than not. Few things are

24 Chapter 3. Administration Guide

http://dev.mysql.com/doc/refman/5.1/en/packet-too-large.html

BMO Documentation

more annoying to bug database users than having a developer mark a bug “fixed” without any comment as to
what the fix was (or even that it was truly fixed!)

noresolveonopenblockers
This option will prevent users from resolving bugs as FIXED if they have unresolved dependencies. Only the
FIXED resolution is affected. Users will be still able to resolve bugs to resolutions other than FIXED if they
have unresolved dependent bugs.

3.1.6 Bug Fields

The parameters in this section determine the default settings of several Bugzilla fields for new bugs and whether certain
fields are used. For example, choose whether to use the Target Milestone field or the Status Whiteboard field.

useclassification
If this is on, Bugzilla will associate each product with a specific classification. But you must have editclassifica-
tion permissions enabled in order to edit classifications.

usetargetmilestone
Do you wish to use the Target Milestone field?

useqacontact
This allows you to define an email address for each component, in addition to that of the default assignee, that
will be sent carbon copies of incoming bugs.

usestatuswhiteboard
This defines whether you wish to have a free-form, overwritable field associated with each bug. The advantage
of the Status Whiteboard is that it can be deleted or modified with ease and provides an easily searchable field
for indexing bugs that have some trait in common.

use_regression_fields
Do you wish to use the Regressions and Regressed by fields? These allow you to efficiently track software regres-
sions, which might previously be managed using the Depends on and Blocks fields along with the “regression”
keyword.

use_see_also
Do you wish to use the See Also field? It allows you mark bugs in other bug tracker installations as being related.
Disabling this field prevents addition of new relationships, but existing ones will continue to appear.

require_bug_type
If this is on, users are asked to choose a type when they file a new bug.

default_bug_type
This is the type that newly entered bugs are set to.

defaultpriority
This is the priority that newly entered bugs are set to.

defaultseverity
This is the severity that newly entered bugs are set to.

defaultplatform
This is the platform that is preselected on the bug entry form. You can leave this empty; Bugzilla will then use
the platform that the browser is running on as the default.

defaultopsys
This is the operating system that is preselected on the bug entry form. You can leave this empty; Bugzilla will
then use the operating system that the browser reports to be running on as the default.

3.1. Parameters 25

BMO Documentation

collapsed_comment_tags
A comma-separated list of tags which, when applied to comments, will cause them to be collapsed by default.

3.1.7 Graphs

Bugzilla can draw graphs of bug-dependency relationships, using a tool called dot (from the GraphViz project) or a
web service called Web Dot. This page allows you to set the location of the binary or service. If no Web Dot server or
binary is specified, then dependency graphs will be disabled.

webdotbase
You may set this parameter to any of the following:

* A complete file path to dot (part of GraphViz), which will generate the graphs locally.
* A URL prefix pointing to an installation of the Web Dot package, which will generate the graphs remotely.
* A blank value, which will disable dependency graphing.

The default value is blank. We recommend using a local install of dot. If you change this value to a web service,
make certain that the Web Dot server can read files from your Web Dot directory. On Apache you do this by
editing the .htaccess file; for other systems the needed measures may vary. You can run checksetup.pl to
recreate the .htaccess file if it has been lost.

font_file
You can specify the full path to a TrueType font file which will be used to display text (labels, legends, ...) in
charts and graphical reports. To support as many languages as possible, we recommend to specify a TrueType
font such as Unifont which supports all printable characters in the Basic Multilingual Plane. If you leave this
parameter empty, a default font will be used, but its support is limited to English characters only and so other
characters will be displayed incorrectly.

3.1.8 Group Security

Bugzilla allows for the creation of different groups, with the ability to restrict the visibility of bugs in a group to a
set of specific users. Specific products can also be associated with groups, and users restricted to only see products
in their groups. Several parameters are described in more detail below. Most of the configuration of groups and their
relationship to products is done on the Groups and Product pages of the Administration area. The options on this page
control global default behavior. For more information on Groups and Group Security, see Groups and Security.

makeproductgroups
Determines whether or not to automatically create groups when new products are created. If this is on, the groups
will be used for querying bugs.

chartgroup
The name of the group of users who can use the ‘New Charts’ feature. Administrators should ensure that the pub-
lic categories and series definitions do not divulge confidential information before enabling this for an untrusted
population. If left blank, no users will be able to use New Charts.

insidergroup
The name of the group of users who can see/change private comments and attachments.

timetrackinggroup
The name of the group of users who can see/change time tracking information.

querysharegroup
The name of the group of users who are allowed to share saved searches with one another. For more information
on using saved searches, see Saved Searches.

26 Chapter 3. Administration Guide

http://graphviz.org/

BMO Documentation

comment_taggers_group
The name of the group of users who can tag comments. Setting this to empty disables comment tagging.

debug_group
The name of the group of users who can view the actual SQL query generated when viewing bug lists and reports.
Do not expose this information to untrusted users.

usevisibilitygroups
If selected, user visibility will be restricted to members of groups, as selected in the group configuration settings.
Each user-defined group can be allowed to see members of selected other groups. For details on configuring
groups (including the visibility restrictions) see Editing Groups and Assigning Group Permissions.

or_groups
Define the visibility of a bug which is in multiple groups. If this is on (recommended), a user only needs to be a
member of one of the bug’s groups in order to view it. If it is off, a user needs to be a member of all the bug’s
groups. Note that in either case, a user’s role on the bug (e.g. reporter), if any, may also affect their permissions.

3.1.9 LDAP

LDAP authentication is a module for Bugzilla’s plugin authentication architecture. This page contains all the parameters
necessary to configure Bugzilla for use with LDAP authentication.

The existing authentication scheme for Bugzilla uses email addresses as the primary user ID and a password to authen-
ticate that user. All places within Bugzilla that require a user ID (e.g. assigning a bug) use the email address. The
LDAP authentication builds on top of this scheme, rather than replacing it. The initial log-in is done with a username
and password for the LDAP directory. Bugzilla tries to bind to LDAP using those credentials and, if successful, tries
to map this account to a Bugzilla account. If an LDAP mail attribute is defined, the value of this attribute is used;
otherwise, the emailsuffix parameter is appended to the LDAP username to form a full email address. If an account for
this address already exists in the Bugzilla installation, it will log in to that account. If no account for that email address
exists, one is created at the time of login. (In this case, Bugzilla will attempt to use the “displayName” or “cn” attribute
to determine the user’s full name.) After authentication, all other user-related tasks are still handled by email address,
not LDAP username. For example, bugs are still assigned by email address and users are still queried by email address.

Warning: Because the Bugzilla account is not created until the first time a user logs in, a user who has not yet
logged is unknown to Bugzilla. This means they cannot be used as an assignee or QA contact (default or otherwise),
added to any CC list, or any other such operation. One possible workaround is the bugzilla_ldapsync.rb script
in the contrib directory. Another possible solution is fixing bug 201069.

Parameters required to use LDAP Authentication:

user_verify_class (in the Authentication section)
If you want to list LDAP here, make sure to have set up the other parameters listed below. Unless you have other
(working) authentication methods listed as well, you may otherwise not be able to log back in to Bugzilla once
you log out. If this happens to you, you will need to manually edit data/params. json and set user_verify_class
to DB.

LDAPserver
This parameter should be set to the name (and optionally the port) of your LDAP server. If no port is specified,
it assumes the default LDAP port of 389. For example: ldap.company.com or ldap.company.com:3268 You can
also specify a LDAP URI, so as to use other protocols, such as LDAPS or LDAPI. If the port was not specified
in the URI, the default is either 389 or 636 for ‘LDAP’ and ‘LDAPS’ schemes respectively.

Note: In order to use SSL with LDAP, specify a URI with “Idaps://”. This will force the use of SSL over
port 636. For example, normal LDAP ldap://ldap.company.com, LDAP over SSL ldaps://Idap.company.com, or

3.1. Parameters 27

https://bugzilla.mozilla.org/show_bug.cgi?id=201069

BMO Documentation

LDAP over a UNIX domain socket 1dapi://%2fvar%2flib%?2fldap_sock.

LDAPstarttls
Whether to require encrypted communication once a normal LDAP connection is achieved with the server.

LDAPbinddn [Optional]
Some LDAP servers will not allow an anonymous bind to search the directory. If this is the case with your
configuration you should set the LDAPbinddn parameter to the user account Bugzilla should use instead of the
anonymous bind. Ex. cn=default,cn=user:password

LDAPBaseDN
The location in your LDAP tree that you would like to search for email addresses. Your uids should be unique
under the DN specified here. Ex. ou=People,o=Company

LDAPuidattribute
The attribute which contains the unique UID of your users. The value retrieved from this attribute will be used
when attempting to bind as the user to confirm their password. Ex. uid

LDAPmailattribute
The name of the attribute which contains the email address your users will enter into the Bugzilla login boxes.
Ex. mail

LDAPfilter
LDAP filter to AND with the LDAPuidattribute for filtering the list of valid users.

3.1.10 RADIUS

RADIUS authentication is a module for Bugzilla’s plugin authentication architecture. This page contains all the pa-
rameters necessary for configuring Bugzilla to use RADIUS authentication.

Note: Most caveats that apply to LDAP authentication apply to RADIUS authentication as well. See LDAP for details.

Parameters required to use RADIUS Authentication:

user_verify_class (in the Authentication section)
If you want to list RADIUS here, make sure to have set up the other parameters listed below. Unless you have other
(working) authentication methods listed as well, you may otherwise not be able to log back in to Bugzilla once
you log out. If this happens to you, you will need to manually edit data/params. json and set user_verify_class
to DB.

RADIUS_server
The name (and optionally the port) of your RADIUS server.

RADIUS_secret
The RADIUS server’s secret.

RADIUS_NAS_IP
The NAS-IP-Address attribute to be used when exchanging data with your RADIUS server. If unspecified,
127.0.0.1 will be used.

RADIUS_email_suffix
Bugzilla needs an email address for each user account. Therefore, it needs to determine the email address cor-
responding to a RADIUS user. Bugzilla offers only a simple way to do this: it can concatenate a suffix to the
RADIUS user name to convert it into an email address. You can specify this suffix in the RADIUS_email_suffix
parameter. If this simple solution does not work for you, you’ll probably need to modify Bugzilla/Auth/
Verify/RADIUS.pm to match your requirements.

28 Chapter 3. Administration Guide

BMO Documentation

3.1.11 Email

This page contains all of the parameters for configuring how Bugzilla deals with the email notifications it sends. See
below for a summary of important options.

mail_delivery_method
This is used to specify how email is sent, or if it is sent at all. There are several options included for different
MTAs, along with two additional options that disable email sending. Test does not send mail, but instead saves
itin data/mailer.testfile for later review. None disables email sending entirely.

mailfrom
This is the email address that will appear in the “From” field of all emails sent by this Bugzilla installation. Some
email servers require mail to be from a valid email address; therefore, it is recommended to choose a valid email
address here.

use_mailer_queue
In a large Bugzilla installation, updating bugs can be very slow because Bugzilla sends all email at once. If you
enable this parameter, Bugzilla will queue all mail and then send it in the background. This requires that you
have installed certain Perl modules (as listed by checksetup.pl for this feature), and that you are running the
jobqueue.pl daemon (otherwise your mail won’t get sent). This affects all mail sent by Bugzilla, not just bug
updates.

smtpserver
The SMTP server address, if the mail_delivery_method parameter is set to SMTP. Use localhost if you have a
local MTA running; otherwise, use a remote SMTP server. Append “:” and the port number if a non-default port
is needed.

smtp_username
Username to use for SASL authentication to the SMTP server. Leave this parameter empty if your server does
not require authentication.

smtp_password
Password to use for SASL authentication to the SMTP server. This parameter will be ignored if the
smtp_username parameter is left empty.

smtp_ssl
Enable SSL support for connection to the SMTP server.

smtp_debug
This parameter allows you to enable detailed debugging output. Log messages are printed the web server’s error
log.

whinedays
Set this to the number of days you want to let bugs go in the CONFIRMED state before notifying people they
have untouched new bugs. If you do not plan to use this feature, simply do not set up the whining cron job
described in the installation instructions, or set this value to “0” (never whine).

globalwatchers
This allows you to define specific users who will receive notification each time any new bug in entered, or when
any existing bug changes, subject to the normal groupset permissions. It may be useful for sending notifications
to a mailing list, for instance.

3.1. Parameters 29

BMO Documentation

3.1.12 Query Defaults

This page controls the default behavior of Bugzilla in regards to several aspects of querying bugs. Options include
what the default query options are, what the “My Bugs” page returns, whether users can freely add bugs to the quip
list, and how many duplicate bugs are needed to add a bug to the “most frequently reported” list.

quip_list_entry_control
Controls how easily users can add entries to the quip list.

 open - Users may freely add to the quip list, and their entries will immediately be available for viewing.
* moderated - Quips can be entered but need to be approved by a moderator before they will be shown.
¢ closed - No new additions to the quips list are allowed.

mybugstemplate
This is the URL to use to bring up a simple ‘all of my bugs’ list for a user. Youserid% will get replaced with the
login name of a user. Special characters must be URL encoded.

defaultquery
This is the default query that initially comes up when you access the advanced query page. It’s in URL-parameter
format.

search_allow_no_criteria
When turned off, a query must have some criteria specified to limit the number of bugs returned to the user.
When turned on, a user is allowed to run a query with no criteria and get all bugs in the entire installation that
they can see. Turning this parameter on is not recommended on large installations.

default_search_limit
By default, Bugzilla limits searches done in the web interface to returning only this many results, for performance
reasons. (This only affects the HTML format of search results—CSV, XML, and other formats are exempted.)
Users can click a link on the search result page to see all the results.

Usually you should not have to change this—the default value should be acceptable for most installations.

max_search_results
The maximum number of bugs that a search can ever return. Tabular and graphical reports are exempted from
this limit, however.

3.1.13 Shadow Database

This page controls whether a shadow database is used. If your Bugzilla is not large, you will not need these options.

A standard large database setup involves a single master server and a pool of read-only slaves (which Bugzilla calls the
“shadowdb”). Queries which are not updating data can be directed to the slave pool, removing the load/locking from
the master, freeing it up to handle writes. Bugzilla will switch to the shadowdb when it knows it doesn’t need to update
the database (e.g. when searching, or displaying a bug to a not-logged-in user).

Bugzilla does not make sure the shadowdb is kept up to date, so, if you use one, you will need to set up replication in
your database server.

If your shadowdb is on a different machine, specify shadowdbhost and shadowdbport. If it’s on the same machine,
specify shadowdbsock.

shadowdbhost
The host the shadow database is on.

shadowdbport
The port the shadow database is on.

30 Chapter 3. Administration Guide

BMO Documentation

shadowdbsock
The socket used to connect to the shadow database, if the host is the local machine.

shadowdb
The database name of the shadow database.

3.1.14 User Matching

The settings on this page control how users are selected and queried when adding a user to a bug. For example, users
need to be selected when assigning the bug, adding to the CC list, or selecting a QA contact. With the usemenuforusers
parameter, it is possible to configure Bugzilla to display a list of users in the fields instead of an empty text field. If
users are selected via a text box, this page also contains parameters for how user names can be queried and matched
when entered.

usemenuforusers
If this option is set, Bugzilla will offer you a list to select from (instead of a text entry field) where a user needs
to be selected. This option should not be enabled on sites where there are a large number of users.

ajax_user_autocompletion
If this option is set, typing characters in a certain user fields will display a list of matches that can be selected from.
It is recommended to only turn this on if you are using mod_perl; otherwise, the response will be irritatingly slow.

maxusermatches
Provide no more than this many matches when a user is searched for. If set to ‘1’, no users will be displayed on
ambiguous matches. This is useful for user-privacy purposes. A value of zero means no limit.

confirmuniqueusermatch
Whether a confirmation screen should be displayed when only one user matches a search entry.

3.1.15 Advanced

inbound_proxies
When inbound traffic to Bugzilla goes through a proxy, Bugzilla thinks that the IP address of the proxy is the IP
address of every single user. If you enter a comma-separated list of IPs in this parameter, then Bugzilla will trust
any X-Forwarded-For header sent from those IPs, and use the value of that header as the end user’s IP address.

proxy_url
If this Bugzilla installation is behind a proxy, enter the proxy information here to enable Bugzilla to access the
Internet. Bugzilla requires Internet access to utilize the upgrade_notification parameter. If the proxy requires
authentication, use the syntax: http://user:pass @proxy_url/.

strict_transport_security
Enables the sending of the Strict-Transport-Security header along with HTTP responses on SSL connections.
This adds greater security to your SSL connections by forcing the browser to always access your domain over
SSL and never accept an invalid certificate. However, it should only be used if you have the ssl_redirect
parameter turned on, Bugzilla is the only thing running on its domain (i.e., your urlbase is something like
http://bugzilla.example.com/), and you never plan to stop supporting SSL.

* off - Don’t send the Strict-Transport-Security header with requests.

¢ this_domain_only - Send the Strict-Transport-Security header with all requests, but only support it for the
current domain.

* include_subdomains - Send the Strict-Transport-Security header along with the includeSubDomains flag,
which will apply the security change to all subdomains. This is especially useful when combined with an
attachment_base that exists as (a) subdomain(s) under the main Bugzilla domain.

3.1. Parameters 31

BMO Documentation

This documentation undoubtedly has bugs; if you find some, please file them here.

3.2 Default Preferences

Each user of Bugzilla can set certain preferences about how they want Bugzilla to behave. Here, you can say whether
or not each of the possible preferences is available to the user and, if it is, what the default value is.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.3 Users

3.3.1 Creating Admin Users

When you first run checksetup.pl after installing Bugzilla, it will prompt you for the username (email address) and
password for the first admin user. If for some reason you delete all the admin users, re-running checksetup.pl will again
prompt you for a username and password and make a new admin.

If you wish to add more administrative users, add them to the “admin” group.

3.3.2 Searching For Users

If you have editusers privileges or if you are allowed to grant privileges for some groups, the Users link will appear
in the Administration page.

The first screen is a search form to search for existing user accounts. You can run searches based either on the user ID,
real name or login name (i.e. the email address, or just the first part of the email address if the emailsuffix parameter is
set). The search can be conducted in different ways using the listbox to the right of the text entry box. You can match
by case-insensitive substring (the default), regular expression, a reverse regular expression match (which finds every
user name which does NOT match the regular expression), or the exact string if you know exactly who you are looking
for. The search can be restricted to users who are in a specific group. By default, the restriction is turned off.

The search returns a list of users matching your criteria. User properties can be edited by clicking the login name. The
Account History of a user can be viewed by clicking the “View” link in the Account History column. The Account
History displays changes that have been made to the user account, the time of the change and the user who made the
change. For example, the Account History page will display details of when a user was added or removed from a group.

3.3.3 Modifying Users

Once you have found your user, you can change the following fields:

* Login Name: This is generally the user’s full email address. However, if you have are using the emailsuffix
parameter, this may just be the user’s login name. Unless you turn off the allowemailchange parameter, users can
change their login names themselves (to any valid email address).

* Real Name: The user’s real name. Note that Bugzilla does not require this to create an account.

* Password: You can change the user’s password here. Users can automatically request a new password, so you
shouldn’t need to do this often. If you want to disable an account, see Disable Text below.

32 Chapter 3. Administration Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

* Bugmail Disabled: Mark this checkbox to disable bugmail and whinemail completely for this account. This
checkbox replaces the data/nomail file which existed in older versions of Bugzilla.

* Disable Text: If you type anything in this box, including just a space, the user is prevented from logging in
and from making any changes to bugs via the web interface. The HTML you type in this box is presented to
the user when they attempt to perform these actions and should explain why the account was disabled. Users
with disabled accounts will continue to receive mail from Bugzilla; furthermore, they will not be able to log
in themselves to change their own preferences and stop it. If you want an account (disabled or active) to stop
receiving mail, simply check the Bugmail Disabled checkbox above.

Note: Even users whose accounts have been disabled can still submit bugs via the email gateway, if one exists.
The email gateway should not be enabled for secure installations of Bugzilla.

Warning: Don’t disable all the administrator accounts!

» <groupname>: If you have created some groups, e.g. “securitysensitive”, then checkboxes will appear here to
allow you to add users to, or remove them from, these groups. The first checkbox gives the user the ability to add
and remove other users as members of this group. The second checkbox adds the user themselves as a member
of the group.

e canconfirm: This field is only used if you have enabled the “unconfirmed” status. If you enable this for a user,
that user can then move bugs from “Unconfirmed” to a “Confirmed” status (e.g.: “New” status).

* creategroups: This option will allow a user to create and destroy groups in Bugzilla.

* editbugs: Unless a user has this bit set, they can only edit those bugs for which they are the assignee or the
reporter. Even if this option is unchecked, users can still add comments to bugs.

* editcomponents: This flag allows a user to create new products and components, modify existing products and
components, and destroy those that have no bugs associated with them. If a product or component has bugs
associated with it, those bugs must be moved to a different product or component before Bugzilla will allow
them to be destroyed.

* editkeywords: If you use Bugzilla’s keyword functionality, enabling this feature allows a user to create and destroy
keywords. A keyword must be removed from any bugs upon which it is currently set before it can be destroyed.

* editusers: This flag allows a user to do what you’re doing right now: edit other users. This will allow those with
the right to do so to remove administrator privileges from other users or grant them to themselves. Enable with
care.

» tweakparams: This flag allows a user to change Bugzilla’s Params (using editparams.cgi.)

* <productname>: This allows an administrator to specify the products in which a user can see bugs. If you turn
on the makeproductgroups parameter in the Group Security Panel in the Parameters page, then Bugzilla creates
one group per product (at the time you create the product), and this group has exactly the same name as the
product itself. Note that for products that already exist when the parameter is turned on, the corresponding group
will not be created. The user must still have the editbugs privilege to edit bugs in these products.

3.3. Users 33

BMO Documentation

3.3.4 Creating New Users

Self-Registration

By default, users can create their own user accounts by clicking the New Account link at the bottom of each page
(assuming they aren’t logged in as someone else already). If you want to disable this self-registration, or if you want to
restrict who can create their own user account, you have to edit the createemailregexp parameter in the Configuration
page; see Parameters.

Administrator Registration

Users with editusers privileges, such as administrators, can create user accounts for other users:
1. After logging in, click the “Users” link at the footer of the query page, and then click “Add a new user”.

2. Fill out the form presented. This page is self-explanatory. When done, click “Submit”.

Note: Adding a user this way will not send an email informing them of their username and password. While
useful for creating dummy accounts (watchers which shuttle mail to another system, for instance, or email ad-
dresses which are a mailing list), in general it is preferable to log out and use the New Account button to create
users, as it will pre-populate all the required fields and also notify the user of their account name and password.

3.3.5 Deleting Users

If the allowuserdeletion parameter is turned on (see Parameters) then you can also delete user accounts. Note that,
most of the time, this is not the best thing to do. If only a warning in a yellow box is displayed, then the deletion is
safe. If a warning is also displayed in a red box, then you should NOT try to delete the user account, else you will get
referential integrity problems in your database, which can lead to unexpected behavior, such as bugs not appearing in
bug lists anymore, or data displaying incorrectly. You have been warned!

3.3.6 Impersonating Users

There may be times when an administrator would like to do something as another user. The sudo feature may be used
to do this.

Note: To use the sudo feature, you must be in the bz_sudoers group. By default, all administrators are in this group.

If you have access to this feature, you may start a session by going to the Edit Users page, Searching for a user and
clicking on their login. You should see a link below their login name titled “Impersonate this user”. Click on the link.
This will take you to a page where you will see a description of the feature and instructions for using it. After reading
the text, simply enter the login of the user you would like to impersonate, provide a short message explaining why you
are doing this, and press the button.

As long as you are using this feature, everything you do will be done as if you were logged in as the user you are
impersonating.

Warning: The user you are impersonating will not be told about what you are doing. If you do anything that
results in mail being sent, that mail will appear to be from the user you are impersonating. You should be extremely
careful while using this feature.

34 Chapter 3. Administration Guide

BMO Documentation

This documentation undoubtedly has bugs; if you find some, please file them here.

3.4 Classifications, Products, Components, Versions, and Mile-
stones

Bugs in Bugzilla are classified into one of a set of admin-defined Components. Components are themselves each part
of a single Product. Optionally, Products can be part of a single Classification, adding a third level to the hierarchy.

3.4.1 Classifications

Classifications are used to group several related products into one distinct entity.

For example, if a company makes computer games, they could have a classification of “Games”, and a separate product
for each game. This company might also have a Common classification, containing products representing units of
technology used in multiple games, and perhaps an Other classification containing a few special products that represent
items that are not actually shipping products (for example, “Website”, or “Administration’).

The classifications layer is disabled by default; it can be turned on or off using the useclassification parameter in the
Bug Fields section of Parameters.

Access to the administration of classifications is controlled using the editclassifications system group, which defines a
privilege for creating, destroying, and editing classifications.

When activated, classifications will introduce an additional step when filling bugs (dedicated to classification selection),
and they will also appear in the advanced search form.

3.4.2 Products

Products usually represent real-world shipping products. Many of Bugzilla’s settings are configurable on a per-product
basis.

When creating or editing products the following options are available:

Product
The name of the product

Description
A brief description of the product

Open for bug entry
Deselect this box to prevent new bugs from being entered against this product.

Enable the UNCONFIRMED status in this product
Select this option if you want to use the UNCONFIRMED status (see Workflow)

Default milestone
Select the default milestone for this product.

Version
Specify the default version for this product.

Create chart datasets for this product
Select to make chart datasets available for this product.

3.4. Classifications, Products, Components, Versions, and Milestones 35

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

It is compulsory to create at least one component in a product, and so you will be asked for the details of that too.

When editing a product you can change all of the above, and there is also a link to edit Group Access Controls; see
Assigning Group Controls to Products.

Creating New Products

To create a new product:
1. Select Administration from the footer and then choose Products from the main administration page.
2. Select the Add link in the bottom right.

3. Enter the details as outlined above.

Editing Products

To edit an existing product, click the “Products” link from the “Administration” page. If the useclassification parameter
is turned on, a table of existing classifications is displayed, including an “Unclassified” category. The table indicates
how many products are in each classification. Click on the classification name to see its products. If the useclassification
parameter is not in use, the table lists all products directly. The product table summarizes the information defined when
the product was created. Click on the product name to edit these properties, and to access links to other product
attributes such as the product’s components, versions, milestones, and group access controls.

Adding or Editing Components, Versions and Target Milestones

To add new or edit existing Components, Versions, or Target Milestones to a Product, select the “Edit Components”,
“Edit Versions”, or “Edit Milestones” links from the “Edit Product” page. A table of existing Components, Versions,
or Milestones is displayed. Click on an item name to edit the properties of that item. Below the table is a link to add a
new Component, Version, or Milestone.

For more information on components, see Components.
For more information on versions, see Versions.

For more information on milestones, see Milestones.

Assigning Group Controls to Products

Onthe Edit Product page, there is a link called Edit Group Access Controls. The settings on this page control
the relationship of the groups to the product being edited.

Group Access Controls are an important aspect of using groups for isolating products and restricting access to bugs
filed against those products. For more information on groups, including how to create, edit, add users to, and alter
permission of, see Groups and Security.

After selecting the “Edit Group Access Controls” link from the “Edit Product” page, a table containing all user-defined
groups for this Bugzilla installation is displayed. The system groups that are created when Bugzilla is installed are not
applicable to Group Access Controls. Below is description of what each of these fields means.

Groups may be applicable (i.e. bugs in this product can be associated with this group), default (i.e. bugs in this product
are in this group by default), and mandatory (i.e. bugs in this product must be associated with this group) for each
product. Groups can also control access to bugs for a given product, or be used to make bugs for a product totally
read-only unless the group restrictions are met. The best way to understand these relationships is by example. See
Common Applications of Group Controls for examples of product and group relationships.

36 Chapter 3. Administration Guide

BMO Documentation

Note: Products and Groups are not limited to a one-to-one relationship. Multiple groups can be associated with the
same product, and groups can be associated with more than one product.

If any group has Entry selected, then the product will restrict bug entry to only those users who are members of all the
groups with Entry selected.

If any group has Canedit selected, then the product will be read-only for any users who are not members of all of the
groups with Canedit selected. Only users who are members of all the Canedit groups will be able to edit bugs for this
product. This is an additional restriction that enables finer-grained control over products rather than just all-or-nothing
access levels.

The following settings let you choose privileges on a per-product basis. This is a convenient way to give privileges to
some users for some products only, without having to give them global privileges which would affect all products.

Any group having editcomponents selected allows users who are in this group to edit all aspects of this product, in-
cluding components, milestones, and versions.

Any group having canconfirm selected allows users who are in this group to confirm bugs in this product.
Any group having editbugs selected allows users who are in this group to edit all fields of bugs in this product.

The MemberControl and OtherControl are used in tandem to determine which bugs will be placed in this group. The
only allowable combinations of these two parameters are listed in a table on the “Edit Group Access Controls” page.
Consult this table for details on how these fields can be used. Examples of different uses are described below.

Common Applications of Group Controls

The use of groups is best explained by providing examples that illustrate configurations for common use cases. The
examples follow a common syntax: Group: Entry, MemberControl, OtherControl, CanEdit, EditComponents, Can-
Confirm, EditBugs, where “Group” is the name of the group being edited for this product. The other fields all corre-
spond to the table on the “Edit Group Access Controls” page. If any of these options are not listed, it means they are
not checked.

Basic Product/Group Restriction

Suppose there is a product called “Bar”. You would like to make it so that only users in the group “Foo” can enter bugs
in the “Bar” product. Additionally, bugs filed in product “Bar” must be visible only to users in “Foo” (plus, by default,
the reporter, assignee, and CC list of each bug) at all times. Furthermore, only members of group “Foo” should be able
to edit bugs filed against product “Bar”, even if other users could see the bug. This arrangement would achieved by the
following:

Product Bar:
foo: ENTRY, MANDATORY/MANDATORY, CANEDIT

Perhaps such strict restrictions are not needed for product “Bar”. Instead, you would like to make it so that only members
of group “Foo” can enter bugs in product “Bar”, but bugs in “Bar” are not required to be restricted in visibility to people
in “Foo”. Anyone with permission to edit a particular bug in product “Bar” can put the bug in group “Foo”, even if
they themselves are not in “Foo”.

Furthermore, anyone in group “Foo” can edit all aspects of the components of product “Bar”, can confirm bugs in
product “Bar”, and can edit all fields of any bug in product “Bar”. That would be done like this:

Product Bar:
foo: ENTRY, SHOWN/SHOWN, EDITCOMPONENTS, CANCONFIRM, EDITBUGS

3.4. Classifications, Products, Components, Versions, and Milestones 37

BMO Documentation

General User Access With Security Group

To permit any user to file bugs against “Product A”, and to permit any user to submit those bugs into a group called
“Security”:

Product A:
security: SHOWN/SHOWN

General User Access With A Security Product

To permit any user to file bugs against product called “Security” while keeping those bugs from becoming visible to
anyone outside the group “SecurityWorkers” (unless a member of the “SecurityWorkers” group removes that restric-
tion):

Product Security:
securityworkers: DEFAULT/MANDATORY

Product Isolation With a Common Group

To permit users of “Product A” to access the bugs for “Product A”, users of “Product B” to access the bugs for “Product
B”, and support staff, who are members of the “Support Group” to access both, three groups are needed:

1. Support Group: Contains members of the support staff.
2. AccessA Group: Contains users of product A and the Support group.
3. AccessB Group: Contains users of product B and the Support group.

Once these three groups are defined, the product group controls can be set to:

Product A:
AccessA: ENTRY, MANDATORY/MANDATORY
Product B:
AccessB: ENTRY, MANDATORY/MANDATORY

Perhaps the “Support Group” wants more control. For example, the “Support Group” could be permitted to make
bugs inaccessible to users of both groups “AccessA” and “AccessB”. Then, the “Support Group” could be permitted to
publish bugs relevant to all users in a third product (let’s call it “Product Common”) that is read-only to anyone outside
the “Support Group”. In this way the “Support Group” could control bugs that should be seen by both groups. That
configuration would be:

Product A:

AccessA: ENTRY, MANDATORY/MANDATORY
Support: SHOWN/NA

Product B:

AccessB: ENTRY, MANDATORY/MANDATORY
Support: SHOWN/NA

Product Common:

Support: ENTRY, DEFAULT/MANDATORY, CANEDIT

38 Chapter 3. Administration Guide

BMO Documentation

Make a Product Read Only

Sometimes a product is retired and should no longer have new bugs filed against it (for example, an older version of a
software product that is no longer supported). A product can be made read-only by creating a group called “readonly”
and adding products to the group as needed:

Product A:
ReadOnly: ENTRY, NA/NA, CANEDIT

Note: For more information on Groups outside of how they relate to products see Groups and Security.

3.4.3 Components

Components are subsections of a Product. E.g. the computer game you are designing may have a “UI” component, an
“API” component, a “Sound System” component, and a “Plugins” component, each overseen by a different programmer.
It often makes sense to divide Components in Bugzilla according to the natural divisions of responsibility within your
Product or company.

Each component has a default assignee and, if you turned it on in the Parameters, a QA Contact. The default assignee
should be the primary person who fixes bugs in that component. The QA Contact should be the person who will ensure
these bugs are completely fixed. The Assignee, QA Contact, and Reporter will get email when new bugs are created in
this Component and when these bugs change. Default Assignee and Default QA Contact fields only dictate the default
assignments; these can be changed on bug submission, or at any later point in a bug’s life.

To create a new Component:
1. Select the Edit components link from the Edit product page.
2. Select the Add link in the bottom right.

3. Fill out the Component field, a short Description, the Default Assignee,Default CC List,andDefault
QA Contact (if enabled). The Component Description field may contain alimited subset of HTML tags. The
Default Assignee field must be a login name already existing in the Bugzilla database.

3.4.4 Versions
Versions are the revisions of the product, such as “Flinders 3.1”, “Flinders 95”, and “Flinders 2000”. Version is not a
multi-select field; the usual practice is to select the earliest version known to have the bug.
To create and edit Versions:
1. From the “Edit product” screen, select “Edit Versions”.

2. You will notice that the product already has the default version “undefined”. Click the “Add” link in the bottom
right.

3. Enter the name of the Version. This field takes text only. Then click the “Add” button.

3.4. Classifications, Products, Components, Versions, and Milestones 39

BMO Documentation

3.4.5 Milestones

Milestones are “targets” that you plan to get a bug fixed by. For example, if you have a bug that you plan to fix for your
3.0 release, it would be assigned the milestone of 3.0.

Note: Milestone options will only appear for a Product if you turned on the usetargetmilestone parameter in the “Bug
Fields” tab of the Parameters page.

To create new Milestones and set Default Milestones:
1. Select “Edit milestones” from the “Edit product” page.
2. Select “Add” in the bottom right corner.

3. Enter the name of the Milestone in the “Milestone” field. You can optionally set the “sortkey”, which is a positive
or negative number (-32768 to 32767) that defines where in the list this particular milestone appears. This is
because milestones often do not occur in alphanumeric order; for example, “Future” might be after “Release
1.2”. Select “Add”.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.5 Flags

If you have the editcomponents permission, you can edit Flag Types from the main administration page. Clicking the
Flags link will bring you to the Administer Flag Types page. Here, you can select whether you want to create (or edit)
a Bug flag or an Attachment flag.

The two flag types have the same administration interface, and the interface for creating a flag and editing a flag have
the same set of fields.

3.5.1 Flag Properties

Name
This is the name of the flag. This will be displayed to Bugzilla users who are looking at or setting the flag. The
name may contain any valid Unicode characters except commas and spaces.

Description
The description describes the flag in more detail. It is visible in a tooltip when hovering over a flag either in
the Show Bug or Edit Attachment pages. This field can be as long as you like and can contain any character you
want.

Category
You can set a flag to be visible or not visible on any combination of products and components.

Default behavior for a newly created flag is to appear on all products and all components, which is why

__Any__:__Any__ is already entered in the Inclusions box. If this is not your desired behavior, you must
either set some exclusions (for products on which you don’t want the flag to appear), or you must remove
__Any__:__Any__ from the Inclusions box and define products/components specifically for this flag.

To create an Inclusion, select a Product from the top drop-down box. You may also select a specific component
from the bottom drop-down box. (Setting __Any__ for Product translates to “all the products in this Bugzilla”.
Selecting __Any__ in the Component field means “all components in the selected product.”) Selections made,
press Include, and your Product/Component pairing will show up in the Inclusions box on the right.

40 Chapter 3. Administration Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

To create an Exclusion, the process is the same: select a Product from the top drop-down box, select a specific
component if you want one, and press Exclude. The Product/Component pairing will show up in the Exclusions
box on the right.

This flag will appear and can be set for any products/components appearing in the Inclusions box (or which
fall under the appropriate __Any__). This flag will not appear (and therefore cannot be set) on any products
appearing in the Exclusions box. IMPORTANT: Exclusions override inclusions.

You may select a Product without selecting a specific Component, but you cannot select a Component without
a Product. If you do so, Bugzilla will display an error message, even if all your products have a component by
that name. You will also see an error if you select a Component that does not belong to the selected Product.

Example: Let’s say you have a product called Jet Plane that has thousands of components. You want to be
able to ask if a problem should be fixed in the next model of plane you release. We’ll call the flag fixInNext.
However, one component in Jet Plane is called Pilot, and it doesn’t make sense to release a new pilot, so you
don’t want to have the flag show up in that component. So, you include Jet Plane:__Any__ and you exclude
Jet Plane:Pilot.

Sort Key
Flags normally show up in alphabetical order. If you want them to show up in a different order, you can use this
key set the order on each flag. Flags with a lower sort key will appear before flags with a higher sort key. Flags
that have the same sort key will be sorted alphabetically.

Active
Sometimes you might want to keep old flag information in the Bugzilla database but stop users from setting any
new flags of this type. To do this, uncheck active. Deactivated flags will still show up in the UI if they are ?,
+, or -, but they may only be cleared (unset) and cannot be changed to a new value. Once a deactivated flag is
cleared, it will completely disappear from a bug/attachment and cannot be set again.

Requestable
New flags are, by default, “requestable”, meaning that they offer users the ? option, as well as + and -. To remove
the ? option, uncheck “requestable”.

Specifically Requestable
By default this box is checked for new flags, meaning that users may make flag requests of specific individuals.
Unchecking this box will remove the text box next to a flag; if it is still requestable, then requests cannot target
specific users and are open to anyone (called a request “to the wind” in Bugzilla). Removing this after specific
requests have been made will not remove those requests; that data will stay in the database (though it will no
longer appear to the user).

Multiplicable
Any flag with Multiplicable:guilabel: set (default for new flags is ‘on’) may be set more than once. After being
set once, an unset flag of the same type will appear below it with “addl.” (short for “additional”’) before the name.
There is no limit to the number of times a Multiplicable flags may be set on the same bug/attachment.

CC List
If you want certain users to be notified every time this flag is set to ?, -, or +, or is unset, add them here. This is
a comma-separated list of email addresses that need not be restricted to Bugzilla usernames.

Grant Group
When this field is set to some given group, only users in the group can set the flag to + and -. This field does not
affect who can request or cancel the flag. For that, see the Request Group field below. If this field is left blank,
all users can set or delete this flag. This field is useful for restricting which users can approve or reject requests.

Request Group
When this field is set to some given group, only users in the group can request or cancel this flag. Note that this
field has no effect if the Grant Group field is empty. You can set the value of this field to a different group, but
both fields have to be set to a group for this field to have an effect.

3.5. Flags 41

BMO Documentation

3.5.2 Deleting a Flag

When you are at the Administer Flag Types screen, you will be presented with a list of Bug flags and a list of Attachment
Flags.

To delete a flag, click on the Delete link next to the flag description.

Warning: Once you delete a flag, it is gone from your Bugzilla. All the data for that flag will be deleted. Every-
where that flag was set, it will disappear, and you cannot get that data back. If you want to keep flag data, but don’t
want anybody to set any new flags or change current flags, unset active in the flag Edit form.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.6 Custom Fields

Custom Fields are fields defined by the administrator, in addition to those which come with Bugzilla by default. Custom
Fields are treated like any other field—they can be set in bugs and used for search queries.

Administrators should keep in mind that adding too many fields can make the user interface more complicated and
harder to use. Custom Fields should be added only when necessary and with careful consideration.

Note: Before adding a Custom Field, make sure that Bugzilla cannot already do the desired behavior. Many Bugzilla
options are not enabled by default, and many times Administrators find that simply enabling certain options that already
exist is sufficient.

Administrators can manage Custom Fields using the Custom Fields link on the Administration page. The Custom
Fields administration page displays a list of Custom Fields, if any exist, and a link to “Add a new custom field”.

3.6.1 Adding Custom Fields

To add a new Custom Field, click the “Add a new custom field” link. This page displays several options for the new
field, described below.

The following attributes must be set for each new custom field:

e Name: The name of the field in the database, used internally. This name MUST begin with cf_ to prevent
confusion with standard fields. If this string is omitted, it will be automatically added to the name entered.

* Description: A brief string used as the label for this Custom Field. That is the string that users will see, and it
should be short and explicit.

* Type: The type of field to create. There are several types available:

Bug ID:
A field where you can enter the ID of another bug from the same Bugzilla installation. To point to a bug in
a remote installation, use the See Also field instead.

Large Text Box:
A multiple line box for entering free text.

Free Text:
A single line box for entering free text.

42 Chapter 3. Administration Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Multiple-Selection Box:
A list box where multiple options can be selected. After creating this field, it must be edited to add the
selection options. See Viewing/Editing Legal Values for information about editing legal values.

Drop Down:
A list box where only one option can be selected. After creating this field, it must be edited to add the
selection options. See Viewing/Editing Legal Values for information about editing legal values.

Date/Time:
A date field. This field appears with a calendar widget for choosing the date.

* Sortkey: Integer that determines in which order Custom Fields are displayed in the User Interface, especially
when viewing a bug. Fields with lower values are displayed first.

* Reverse Relationship Description: When the custom field is of type Bug ID, you can enter text here which will
be used as label in the referenced bug to list bugs which point to it. This gives you the ability to have a mutual
relationship between two bugs.

* Can be set on bug creation: Boolean that determines whether this field can be set on bug creation. If not selected,
then a bug must be created before this field can be set. See Filing a Bug for information about filing bugs.

* Displayed in bugmail for new bugs: Boolean that determines whether the value set on this field should appear
in bugmail when the bug is filed. This attribute has no effect if the field cannot be set on bug creation.

e [s obsolete: Boolean that determines whether this field should be displayed at all. Obsolete Custom Fields are
hidden.

* Is mandatory: Boolean that determines whether this field must be set. For single and multi-select fields, this
means that a (non-default) value must be selected; for text and date fields, some text must be entered.

e Field only appears when: A custom field can be made visible when some criteria is met. For instance, when the
bug belongs to one or more products, or when the bug is of some given severity. If left empty, then the custom
field will always be visible, in all bugs.

e Field that controls the values that appear in this field: When the custom field is of type Drop Down or
Multiple-Selection Box, you can restrict the availability of the values of the custom field based on the
value of another field. This criteria is independent of the criteria used in the Field only appears when
setting. For instance, you may decide that some given value valueY is only available when the bug status is RE-
SOLVED while the value valueX should always be listed. Once you have selected the field that should control
the availability of the values of this custom field, you can edit values of this custom field to set the criteria; see
Viewing/Editing Legal Values.

3.6.2 Editing Custom Fields

As soon as a Custom Field is created, its name and type cannot be changed. If this field is a drop-down menu, its legal
values can be set as described in Viewing/Editing Legal Values. All other attributes can be edited as described above.

3.6.3 Deleting Custom Fields

Only custom fields that are marked as obsolete, and that have never been used, can be deleted completely (else the
integrity of the bug history would be compromised). For custom fields marked as obsolete, a “Delete” link will appear
in the Action column. If the custom field has been used in the past, the deletion will be rejected. Marking the field as
obsolete, however, is sufficient to hide it from the user interface entirely.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.6. Custom Fields 43

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

3.7 Field Values

Legal values for the operating system, platform, bug priority and severity, and custom fields of type Drop Down and
Multiple-Selection Box (see Custom Fields), as well as the list of valid bug statuses and resolutions, can be cus-
tomized from the same interface. You can add, edit, disable, and remove the values that can be used with these fields.

3.7.1 Viewing/Editing Legal Values
Editing legal values requires admin privileges. Select “Field Values” from the Administration page. A list of all fields,
both system and Custom, for which legal values can be edited appears. Click a field name to edit its legal values.

There is no limit to how many values a field can have, but each value must be unique to that field. The sortkey is
important to display these values in the desired order.

When the availability of the values of a custom field is controlled by another field, you can select from here which value
of the other field must be set for the value of the custom field to appear.

3.7.2 Deleting Legal Values

Legal values from Custom Fields can be deleted, but only if the following two conditions are respected:
1. The value is not set as the default for the field.
2. No bug is currently using this value.

If any of these conditions is not respected, the value cannot be deleted. The only way to delete these values is to reassign
bugs to another value and to set another value as default for the field.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.8 Workflow

The bug status workflow—which statuses are valid transitions from which other statuses—can be customized.

You need to begin by defining the statuses and resolutions you want to use (see Field Values). By convention, these are
in all capital letters.

Only one bug status, UNCONFIRMED, can never be renamed nor deleted. However, it can be disabled entirely on a
per-product basis (see Classifications, Products, Components, Versions, and Milestones). The status referred to by the
duplicate_or_move_bug_status parameter, if set, is also undeletable. To make it deletable, simply set the value of that
parameter to a different status.

Aside from the empty value, two resolutions, DUPLICATE and FIXED, cannot be renamed or deleted. (FIXED could
be if we fixed bug 1007605.)

Once you have defined your statuses, you can configure the workflow of how a bug moves between them. The workflow
configuration page displays all existing bug statuses twice: first on the left for the starting status, and on the top for the
target status in the transition. If the checkbox is checked, then the transition from the left to the top status is legal; if
it’s unchecked, that transition is forbidden.

The status used as the duplicate_or_move_bug_status parameter (normally RESOLVED or its equivalent) is required
to be a legal transition from every other bug status, and so this is enforced on the page.

44 Chapter 3. Administration Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/show_bug.cgi?id=1007605

BMO Documentation

The “View Comments Required on Status Transitions” link below the table lets you set which transitions require a
comment from the user.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.9 Groups and Security

Groups allow for separating bugs into logical divisions. Groups are typically used to isolate bugs that should only be
seen by certain people. For example, a company might create a different group for each one of its customers or partners.
Group permissions could be set so that each partner or customer would only have access to their own bugs. Or, groups
might be used to create variable access controls for different departments within an organization. Another common
use of groups is to associate groups with products, creating isolation and access control on a per-product basis.

Groups and group behaviors are controlled in several places:

1. The group configuration page. To view or edit existing groups, or to create new groups, access the “Groups” link
from the “Administration” page. This section of the manual deals primarily with the aspect of group controls
accessed on this page.

2. Global configuration parameters. Bugzilla has several parameters that control the overall default group behavior
and restriction levels. For more information on the parameters that control group behavior globally, see Group
Security.

3. Product association with groups. Most of the functionality of groups and group security is controlled at the
product level. Some aspects of group access controls for products are discussed in this section, but for more
detail see Assigning Group Controls to Products.

4. Group access for users. See Assigning Users to Groups for details on how users are assigned group access.

Group permissions are such that if a bug belongs to a group, only members of that group can see the bug. If a bug is
in more than one group, only members of all the groups that the bug is in can see the bug. For information on granting
read-only access to certain people and full edit access to others, see Assigning Group Controls to Products.

Note: By default, bugs can also be seen by the Assignee, the Reporter, and everyone on the CC List, regardless of
whether or not the bug would typically be viewable by them. Visibility to the Reporter and CC List can be overridden
(on a per-bug basis) by bringing up the bug, finding the section that starts with Users in the roles selected
below. .. and un-checking the box next to either ‘Reporter’ or ‘CC List’ (or both).

3.9.1 Creating Groups

To create a new group, follow the steps below:

1. Select the Administration link in the page footer, and then select the Groups link from the Administration
page.

2. A table of all the existing groups is displayed. Below the table is a description of all the fields. To create a new
group, select the Add Group link under the table of existing groups.

3. There are five fields to fill out. These fields are documented below the form. Choose a name and description
for the group. Decide whether this group should be used for bugs (in all likelihood this should be selected).
Optionally, choose a regular expression that will automatically add any matching users to the group, and choose
an icon that will help identify user comments for the group. The regular expression can be useful, for example,
to automatically put all users from the same company into one group (if the group is for a specific customer or
partner).

3.9. Groups and Security 45

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Note: If User RegExp is filled out, users whose email addresses match the regular expression will automatically
be members of the group as long as their email addresses continue to match the regular expression. If their email
address changes and no longer matches the regular expression, they will be removed from the group. Versions
2.16 and older of Bugzilla did not automatically remove users whose email addresses no longer matched the
RegExp.

Warning: If specifying a domain in the regular expression, end the regexp with a “$”. Oth-
erwise, when granting access to “@mycompany\.com”, access will also be granted to ‘badper-
son@mycompany.com.cracker.net’. Use the syntax, ‘@mycompany\.com$’ for the regular expression.

4. After the new group is created, it can be edited for additional options. The “Edit Group” page allows for specifying
other groups that should be included in this group and which groups should be permitted to add and delete users
from this group. For more details, see Editing Groups and Assigning Group Permissions.

3.9.2 Editing Groups and Assigning Group Permissions

To access the “Edit Groups” page, select the Administration link in the page footer, and then select the Groups link
from the Administration page. A table of all the existing groups is displayed. Click on a group name you wish to edit
or control permissions for.

The “Edit Groups” page contains the same five fields present when creating a new group. Below that are two additional
sections, “Group Permissions” and “Mass Remove”. The “Mass Remove” option simply removes all users from the
group who match the regular expression entered. The “Group Permissions” section requires further explanation.

The “Group Permissions” section on the “Edit Groups™ page contains four sets of permissions that control the relation-
ship of this group to other groups. If the usevisibilitygroups parameter is in use (see Parameters) two additional sets
of permissions are displayed. Each set consists of two select boxes. On the left, a select box with a list of all existing
groups. On the right, a select box listing all groups currently selected for this permission setting (this box will be empty
for new groups). The way these controls allow groups to relate to one another is called inheritance. Each of the six
permissions is described below.

Groups That Are a Member of This Group
Members of any groups selected here will automatically have membership in this group. In other words, members
of any selected group will inherit membership in this group.

Groups That This Group Is a Member Of
Members of this group will inherit membership to any group selected here. For example, suppose the group
being edited is an Admin group. If there are two products (Productl and Product2) and each product has its
own group (Groupl and Group2), and the Admin group should have access to both products, simply select both
Groupl and Group?2 here.

Groups That Can Grant Membership in This Group
The members of any group selected here will be able add users to this group, even if they themselves are not in
this group.

Groups That This Group Can Grant Membership In
Members of this group can add users to any group selected here, even if they themselves are not in the selected
groups.

Groups That Can See This Group
Members of any selected group can see the users in this group. This setting is only visible if the usevisibility-
groups parameter is enabled on the Bugzilla Configuration page. See Parameters for information on configuring
Bugzilla.

46 Chapter 3. Administration Guide

mailto:'badperson@mycompany.com.cracker.net
mailto:'badperson@mycompany.com.cracker.net
mailto:'@mycompany

BMO Documentation

Groups That This Group Can See
Members of this group can see members in any of the selected groups. This setting is only visible if the usevis-
ibilitygroups parameter is enabled on the the Bugzilla Configuration page. See Parameters for information on
configuring Bugzilla.

3.9.3 Assigning Users to Groups

A User can become a member of a group in several ways:

1. The user can be explicitly placed in the group by editing the user’s profile. This can be done by accessing
the “Users” page from the “Administration” page. Use the search form to find the user you want to edit group
membership for, and click on their email address in the search results to edit their profile. The profile page lists
all the groups and indicates if the user is a member of the group either directly or indirectly. More information
on indirect group membership is below. For more details on User Administration, see Users.

2. The group can include another group of which the user is a member. This is indicated by square brackets around
the checkbox next to the group name in the user’s profile. See Editing Groups and Assigning Group Permissions
for details on group inheritance.

3. The user’s email address can match the regular expression that has been specified to automatically grant mem-
bership to the group. This is indicated by “*” around the check box by the group name in the user’s profile. See
Creating Groups for details on the regular expression option when creating groups.

3.9.4 Assigning Group Controls to Products

The primary functionality of groups is derived from the relationship of groups to products. The concepts around
segregating access to bugs with product group controls can be confusing. For details and examples on this topic, see
Assigning Group Controls to Products.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.10 Keywords

The administrator can define keywords which can be used to tag and categorize bugs. For example, the keyword
“regression” is commonly used. A company might have a policy stating all regressions must be fixed by the next
release—this keyword can make tracking those bugs much easier. Keywords are global, rather than per product.

Keywords can be created, edited, or deleted by clicking the “Keywords” link in the admin page. There are two fields for
each keyword—the keyword itself and a brief description. Currently keywords cannot be marked obsolete to prevent
future usage.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.10. Keywords 47

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

3.11 Whining

Whining is a feature in Bugzilla that can regularly annoy users at specified times. Using this feature, users can execute
saved searches at specific times (e.g. the 15th of the month at midnight) or at regular intervals (e.g. every 15 minutes
on Sundays). The results of the searches are sent to the user, either as a single email or as one email per bug, along
with some descriptive text.

Warning: Throughout this section it will be assumed that all users are members of the bz_canusewhines group,
membership in which is required in order to use the Whining system. You can easily make all users members of
the bz_canusewhines group by setting the User RegExp to “.*” (without the quotes).

Also worth noting is the bz_canusewhineatothers group. Members of this group can create whines for any user
or group in Bugzilla using an extended form of the whining interface. Features only available to members of the
bz_canusewhineatothers group will be noted in the appropriate places.

Note: For whining to work, a special Perl script must be executed at regular intervals. More information on this is
available in installation-whining.

Note: This section does not cover the whineatnews.pl script. See installation-whining-cron for more information on
The Whining Cron.

3.11.1 The Event

The whining system defines an “Event” as one or more queries being executed at regular intervals, with the results of
said queries (if there are any) being emailed to the user. Events are created by clicking on the “Add new event” button.

Once a new event is created, the first thing to set is the “Email subject line”. The contents of this field will be used in
the subject line of every email generated by this event. In addition to setting a subject, space is provided to enter some
descriptive text that will be included at the top of each message (to help you in understanding why you received the
email in the first place).

The next step is to specify when the Event is to be run (the Schedule) and what searches are to be performed (the
Searches).

3.11.2 Whining Schedule

Each whining event is associated with zero or more schedules. A schedule is used to specify when the search (specified
below) is to be run. A new event starts out with no schedules (which means it will never run, as it is not scheduled to
run). To add a schedule, press the “Add a new schedule” button.

Each schedule includes an interval, which you use to tell Bugzilla when the event should be run. An event can be run
on certain days of the week, certain days of the month, during weekdays (defined as Monday through Friday), or every
day.

Warning: Be careful if you set your event to run on the 29th, 30th, or 31st of the month, as your event may not run
exactly when expected. If you want your event to run on the last day of the month, select “Last day of the month”
as the interval.

48 Chapter 3. Administration Guide

BMO Documentation

Once you have specified the day(s) on which the event is to be run, you should now specify the time at which the event is
to be run. You can have the event run at a certain hour on the specified day(s), or every hour, half-hour, or quarter-hour
on the specified day(s).

If a single schedule does not execute an event as many times as you would want, you can create another schedule for the
same event. For example, if you want to run an event on days whose numbers are divisible by seven, you would need
to add four schedules to the event, setting the schedules to run on the 7th, 14th, 21st, and 28th (one day per schedule)
at whatever time (or times) you choose.

Note: If you are a member of the bz_canusewhineatothers group, then you will be presented with another option:
“Mail to”. Using this you can control who will receive the emails generated by this event. You can choose to send the
emails to a single user (identified by email address) or a single group (identified by group name). To send to multiple
users or groups, create a new schedule for each additional user/group.

3.11.3 Whining Searches

Each whining event is associated with zero or more searches. A search is any saved search to be run as part of the
specified schedule (see above). You start out without any searches associated with the event (which means that the
event will not run, as there will never be any results to return). To add a search, press the “Add a search” button.

The first field to examine in your newly added search is the Sort field. Searches are run, and results included, in the
order specified by the Sort field. Searches with smaller Sort values will run before searches with bigger Sort values.

The next field to examine is the Search field. This is where you choose the actual search that is to be run. Instead of
defining search parameters here, you are asked to choose from the list of saved searches (the same list that appears at the
bottom of every Bugzilla page). You are only allowed to choose from searches that you have saved yourself (the default
saved search, “My Bugs”, is not a valid choice). If you do not have any saved searches, you can take this opportunity
to create one (see Bug Lists).

Note: When running searches, the whining system acts as if you are the user executing the search. This means that
the whining system will ignore bugs that match your search but that you cannot access.

Once you have chosen the saved search to be executed, give the search a descriptive title. This title will appear in the
email, above the results of the search. If you choose “One message per bug”, the search title will appear at the top of
each email that contains a bug matching your search.

Finally, decide if the results of the search should be sent in a single email, or if each bug should appear in its own email.

Warning: Think carefully before checking the “One message per bug” box. If you create a search that matches
thousands of bugs, you will receive thousands of emails!

3.11. Whining 49

BMO Documentation

3.11.4 Saving Your Changes

Once you have defined at least one schedule and created at least one search, go ahead and “Update/Commit”. This will
save your Event and make it available for immediate execution.

Note: If you ever feel like deleting your event, you may do so using the “Remove Event” button in the upper-right
corner of each Event. You can also modify an existing event, so long as you “Update/Commit” after completing your
modifications.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.12 Quips

Quips are small user-defined messages (often quotes or witty sayings) that can be configured to appear at the top of
search results. Each Bugzilla installation has its own specific quips. Whenever a quip needs to be displayed, a random
selection is made from the pool of already existing quips.

Quip submission is controlled by quip_list_entry_control parameter. It has several possible values: open, moderated,
or closed. In order to enable quips approval you need to set this parameter to “moderated”. In this way, users are free
to submit quips for addition, but an administrator must explicitly approve them before they are actually used.

In order to see the user interface for the quips, you can click on a quip when it is displayed together with the search
results. You can also go directly to the quips.cgi URL (prefixed with the usual web location of the Bugzilla installation).
Once the quip interface is displayed, the “view and edit the whole quip list” link takes you to the quips administration
page, which lists all quips available in the database.

Next to each quip there is a checkbox, under the “Approved” column. Quips that have this checkbox checked are already
approved and will appear next to the search results. The ones that have it unchecked are still preserved in the database
but will not appear on search results pages. User submitted quips have initially the checkbox unchecked.

Also, there is a delete link next to each quip, which can be used in order to permanently delete a quip.

Display of quips is controlled by the display_quips user preference. Possible values are “on” and “oft”.

This documentation undoubtedly has bugs; if you find some, please file them here.

3.13 Installed Extensions

Bugzilla can be enhanced using extensions (see Extensions). If an extension comes with documentation in the appropri-
ate format, and you build your own copy of the Bugzilla documentation using makedocs.pl, then the documentation
for your installed extensions will show up here.

Your Bugzilla installation has the following extensions available (as of the last time you compiled the documentation):

This documentation undoubtedly has bugs; if you find some, please file them here.

This documentation undoubtedly has bugs; if you find some, please file them here.

50 Chapter 3. Administration Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

CHAPTER
FOUR

INTEGRATION AND CUSTOMIZATION GUIDE

You may find that Bugzilla already does what you want it to do, you just need to configure it correctly. Read the
Administration Guide sections carefully to see if that’s the case for you. If not, then this chapter explains how to use
the available mechanisms for integration and customization.

4.1 Customization FAQ

How dol...

...add a new field on a bug?
Use Custom Fields or, if you just want new form fields on bug entry but don’t need Bugzilla to track the field
separately thereafter, you can use a custom bug entry form.

..change the name of a built-in bug field?
Edit the relevant value in the template template/en/default/global/field-descs.none. tmpl.

..use a word other than ‘bug’ to describe bugs?
Edit or override the appropriate values in the template template/en/default/global/variables.none.
tmpl.

..call the system something other than ‘Bugzilla’?
Edit or override the appropriate value in the template template/en/default/global/variables.none.
tmpl.

..alter who can change what field when?
See Altering Who Can Change What.

This documentation undoubtedly has bugs; if you find some, please file them here.

4.2 Languages

Bugzilla’s templates can be localized, although it’s a big job. If you have a localized set of templates for your version of
Bugzilla, Bugzilla can support multiple languages at once. In that case, Bugzilla honours the user’s Accept-Language
HTTP header when deciding which language to serve. If multiple languages are installed, a menu will display in
the header allowing the user to manually select a different language. If they do this, their choice will override the
Accept-Language header.

Many language templates can be obtained from the localization section of the Bugzilla website. Instructions for sub-
mitting new languages are also available from that location. There’s also a list of localization teams; you might want
to contact someone to ask about the status of their localization.

51

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://wiki.mozilla.org/Bugzilla:L10n:Guide
https://www.bugzilla.org/download.html#localizations
https://wiki.mozilla.org/Bugzilla:L10n:Localization_Teams

BMO Documentation

This documentation undoubtedly has bugs; if you find some, please file them here.

4.3 Skins

Bugzilla supports skins - ways of changing the look of the UI without altering its underlying structure. It ships with
two - “Classic” and “Dusk”. You can find some more listed on the wiki, and there are a couple more which are part of
bugzilla.mozilla.org. However, in each case you may need to check that the skin supports the version of Bugzilla you
have.

To create a new custom skin, make a directory that contains all the same CSS file names as skins/standard/, and
put your directory in skins/contrib/. Then, add your CSS to the appropriate files.

After you put the directory there, make sure to run checksetup.pl so that it can set the file permissions correctly.

After you have installed the new skin, it will show up as an option in the user’s Preferences, on the General tab. If you
would like to force a particular skin on all users, just select that skin in the Default Preferences in the Administration
UI, and then uncheck “Enabled” on the preference, so users cannot change it.

This documentation undoubtedly has bugs; if you find some, please file them here.

4.4 Templates

Bugzilla uses a system of templates to define its user interface. The standard templates can be modified, replaced or
overridden. You can also use template hooks in an extension to add or modify the behavior of templates using a stable
interface.

4.4.1 Template Directory Structure

The template directory structure starts with top level directory named template, which contains a directory for
each installed localization. Bugzilla comes with English templates, so the directory name is en, and we will dis-
cuss template/en throughout the documentation. Below template/en is the default directory, which contains all
the standard templates shipped with Bugzilla.

Warning: A directory data/template also exists; this is where Template Toolkit puts the compiled versions (i.e.
Perl code) of the templates. Do not directly edit the files in this directory, or all your changes will be lost the next
time Template Toolkit recompiles the templates.

4.4.2 Choosing a Customization Method

If you want to edit Bugzilla’s templates, the first decision you must make is how you want to go about doing so. There
are three choices, and which you use depends mainly on the scope of your modifications, and the method you plan to
use to upgrade Bugzilla.

1. You can directly edit the templates found in template/en/default.

2. You can copy the templates to be modified into a mirrored directory structure under template/en/custom.
Templates in this directory structure automatically override any identically-named and identically-located tem-
plates in the template/en/default directory. (The custom directory does not exist by default and must be
created if you want to use it.)

52 Chapter 4. Integration and Customization Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://wiki.mozilla.org/Bugzilla:Addons#Skins
http://git.mozilla.org/?p=webtools/bmo/bugzilla.git
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

3. You can use the hooks built into many of the templates to add or modify the UI from an extension. Hooks
generally don’t go away and have a stable interface.

The third method is the best if there are hooks in the appropriate places and the change you want to do is possible using
hooks. It’s not very easy to modify existing UI using hooks; they are most commonly used for additions. You can make
modifications if you add JS code which then makes the modifications when the page is loaded. You can remove UI by
adding CSS to hide it.

Unlike code hooks, there is no requirement to document template hooks, so you just have to open up the template and
see (search for Hook.process).

If there are no hooks available, then the second method of customization should be used if you are going to make major
changes, because it is guaranteed that the contents of the custom directory will not be touched during an upgrade,
and you can then decide whether to revert to the standard templates, continue using yours, or make the effort to merge
your changes into the new versions by hand. It’s also good for entirely new files, and for a few files like bug/create/
user-message.html . tmpl which are designed to be entirely replaced.

Using the second method, your user interface may break if incompatible changes are made to the template interface.
Templates do change regularly and so interface changes are not individually documented, and you would need to work
out what had changed and adapt your template accordingly.

For minor changes, the convenience of the first method is hard to beat. When you upgrade Bugzilla, git will merge
your changes into the new version for you. On the downside, if the merge fails then Bugzilla will not work properly
until you have fixed the problem and re-integrated your code.

Also, you can see what you’ve changed using git diff, which you can’t if you fork the file into the custom directory.

4.4.3 How To Edit Templates

Note: If you are making template changes that you intend on submitting back for inclusion in standard Bugzilla, you
should read the relevant sections of the Developers’” Guide.

Bugzilla uses a templating system called Template Toolkit. The syntax of the language is beyond the scope of this
guide. It’s reasonably easy to pick up by looking at the current templates; or, you can read the manual, available on the
Template Toolkit home page.

One thing you should take particular care about is the need to properly HTML filter data that has been passed into the
template. This means that if the data can possibly contain special HTML characters such as <, and the data was not
intended to be HTML, they need to be converted to entity form, i.e. &1t ;. You use the html filter in the Template Toolkit
to do this (or the uri filter to encode special characters in URLSs). If you forget, you may open up your installation to
cross-site scripting attacks.

You should run . /checksetup.pl after editing any templates. Failure to do so may mean either that your changes are
not picked up, or that the permissions on the edited files are wrong so the webserver can’t read them.

4.4. Templates 53

https://www.bugzilla.org/docs/developer.html
http://www.template-toolkit.org

BMO Documentation

4.4.4 Template Formats and Types

Some CGI’s have the ability to use more than one template. For example, buglist.cgi can output itself as two
formats of HTML (complex and simple). Each of these is a separate template. The mechanism that provides this
feature is extensible - you can create new templates to add new formats.

You might use this feature to e.g. add a custom bug entry form for a particular subset of users or a particular type of
bug.

Bugzilla can also support different types of output - e.g. bugs are available as HTML and as XML, and this mechanism
is extensible also to add new content types. However, instead of using such interfaces or enhancing Bugzilla to add
more, you would be better off using the WebService API Reference to integrate with Bugzilla.

To see if a CGI supports multiple output formats and types, grep the CGI for get_format. If it’s not present, adding
multiple format/type support isn’t too hard - see how it’s done in other CGls, e.g. config.cgi.

To make a new format template for a CGI which supports this, open a current template for that CGI and take note of
the INTERFACE comment (if present.) This comment defines what variables are passed into this template. If there
isn’t one, I’'m afraid you’ll have to read the template and the code to find out what information you get.

Write your template in whatever markup or text style is appropriate.

You now need to decide what content type you want your template served as. The content types are defined in the
Bugzilla/Constants.pm file in the contenttypes constant. If your content type is not there, add it. Remember
the three- or four-letter tag assigned to your content type. This tag will be part of the template filename.

Save your new template as <stubname>-<formatname>.<contenttypetag>.tmpl. Try out the template by calling
the CGI as <cginame>.cgi?format=<formatname>. Add &ctype=<type> if the type is not HTML.

4.4.5 Particular Templates

There are a few templates you may be particularly interested in customizing for your installation.

index.html. tmpl:
This is the Bugzilla front page.

global/header.html.tmpl:
This defines the header that goes on all Bugzilla pages. The header includes the banner, which is what appears to
users and is probably what you want to edit instead. However the header also includes the HTML HEAD section,
so you could for example add a stylesheet or META tag by editing the header.

global/banner.html.tmpl:
This contains the banner, the part of the header that appears at the top of all Bugzilla pages. The default banner
is reasonably barren, so you’ll probably want to customize this to give your installation a distinctive look and
feel. It is recommended you preserve the Bugzilla version number in some form so the version you are running
can be determined, and users know what docs to read.

global/footer.html.tmpl:
This defines the footer that goes on all Bugzilla pages. Editing this is another way to quickly get a distinctive
look and feel for your Bugzilla installation.

global/variables.none.tmpl:
This allows you to change the word ‘bug’ to something else (e.g. “issue”) throughout the interface, and also to
change the name Bugzilla to something else (e.g. “FooCorp Bug Tracker”).

list/table.html.tmpl:
This template controls the appearance of the bug lists created by Bugzilla. Editing this template allows per-
column control of the width and title of a column, the maximum display length of each entry, and the wrap
behavior of long entries. For long bug lists, Bugzilla inserts a ‘break’ every 100 bugs by default; this behavior
is also controlled by this template, and that value can be modified here.

54 Chapter 4. Integration and Customization Guide

BMO Documentation

bug/create/user-message.html.tmpl:
This is a message that appears near the top of the bug reporting page. By modifying this, you can tell your users
how they should report bugs.

bug/process/midair.html. tmpl:
This is the page used if two people submit simultaneous changes to the same bug. The second person to submit
their changes will get this page to tell them what the first person did, and ask if they wish to overwrite those
changes or go back and revisit the bug. The default title and header on this page read “Mid-air collision detected!”
If you work in the aviation industry, or other environment where this might be found offensive (yes, we have true
stories of this happening) you’ll want to change this to something more appropriate for your environment.

bug/create/create.html.tmpl and bug/create/comment.txt.tmpl:
You may not wish to go to the effort of creating custom fields in Bugzilla, yet you want to make sure that each
bug report contains a number of pieces of important information for which there is not a special field. The bug
entry system has been designed in an extensible fashion to enable you to add arbitrary HTML widgets, such as
drop-down lists or textboxes, to the bug entry page and have their values appear formatted in the initial comment.

An example of this is the guided bug submission form. The code for this comes with the Bugzilla distribution as
an example for you to copy. It can be found in the files create-guided.html. tmpl and comment-guided.
html. tmpl.

A hidden field that indicates the format should be added inside the form in order to make the template functional.
Its value should be the suffix of the template filename. For example, if the file is called create-guided.html.
tmpl, then

<input type="hidden" name="format" value="guided">

is used inside the form.

So to use this feature, create a custom template for enter_bug.cgi. The default template, on
which you could base it, is default/bug/create/create.html.tmpl. Call it custom/bug/create/
create-<formatname>.html.tmpl, and in it, add form inputs for each piece of information you’d like col-
lected - such as a build number, or set of steps to reproduce.

Then, create a template based on default/bug/create/comment.txt.tmpl, and call it custom/bug/
create/comment-<formatname>. txt.tmpl. It needs a couple of lines of boilerplate at the top like this:

[% USE Bugzilla %]
[% cgi = Bugzilla.cgi %

Then, this template can reference the form fields you have created using the syntax [% cgi.
param("field_name") %]. When a bug report is submitted, the initial comment attached to the bug report
will be formatted according to the layout of this template.

For example, if your custom enter_bug template had a field:

<input type="text" name="buildid" size="30">

and then your comment.txt.tmpl had:

[% USE Bugzilla %]
[% cgi = Bugzilla.cgi %]
Build Identifier: [%+ cgi.param("buildid") %]

then something like:

Build Identifier: 20140303

4.4. Templates 55

https://bugzilla-dev.allizom.org/enter_bug.cgi?product=Firefox&format=guided

BMO Documentation

would appear in the initial comment.

This system allows you to gather structured data in bug reports without the overhead and UI complexity of a large
number of custom fields.

This documentation undoubtedly has bugs; if you find some, please file them here.

4.5 Extensions

One of the best ways to customize Bugzilla is by using a Bugzilla Extension. Extensions can modify both the code and
UI of Bugzilla in a way that can be distributed to other Bugzilla users and ported forward to future versions of Bugzilla
with minimal effort. We maintain a list of available extensions written by other people on our wiki. You would need
to make sure that the extension in question works with your version of Bugzilla.

Or, you can write your own extension. See the Bugzilla Extension documentation for the core documentation on how to
do that. It would make sense to read the section on Templates. There is also a sample extension in $BUGZILLA_HOME/
extensions/Example/ which gives examples of how to use all the code hooks.

This section explains how to achieve some common tasks using the Extension APIs.

4.5.1 Adding A New Page to Bugzilla

There are occasions where it’s useful to add a new page to Bugzilla which has little or no relation to other pages, and
perhaps doesn’t use very much Bugzilla data. A help page, or a custom report for example. The best mechanism for
this is to use page.cgi and the page_before_template hook.

4.5.2 Altering Data On An Existing Page

The template_before_process hook can be used to tweak the data displayed on a particular existing page, if you
know what template is used. It has access to all the template variables before they are passed to the templating engine.

4.5.3 Adding New Fields To Bugs

To add new fields to a bug, you need to do the following:

* Add an install_update_db hook to add the fields by calling Bugzilla: :Field->create (only if the field
doesn’t already exist). Here’s what it might look like for a single field:

my $field = new Bugzilla::Field({ name => $name });
return if $field;

§field = Bugzilla::Field->create({

name => $name,

description => $description,

type => $type, # From list in Constants.pm
enter_bug = 0,

buglist = 0,

custom =1,

H;

* Push the name of the field onto the relevant arrays in the bug_columns and bug_fields hooks.

56 Chapter 4. Integration and Customization Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://wiki.mozilla.org/Bugzilla:Addons
https://www.bugzilla.org/docs/tip/en/html/api/Bugzilla/Extension.html

BMO Documentation

* If you want direct accessors, or other functions on the object, you need to add a BEGIN block to your Exten-
sion.pm:

BEGIN {
*Bugzilla::Bug::is_foopy = \&_bug_is_foopy;
}

sub _bug_is_foopy {
return $_[0]->{'is_foopy'};
}

* You don’t have to change Bugzilla/DB/Schema.pm.

¢ You can use bug_end_of_create, bug_end_of_create_validators, and bug_end_of_update to create
or update the values for your new field.

4.5.4 Adding New Fields To Other Things

If you are adding the new fields to an object other than a bug, you need to go a bit lower-level. With reference to the
instructions above:

e In install_update_db, use bz_add_column instead
¢ Push on the columns in object_columns and object_update_columns instead of bug_columns.
¢ Add validators for the values in object_validators

The process for adding accessor functions is the same.

You can use the hooks object_end_of_create, object_end_of_create_validators,
object_end_of_set_all, and object_end_of_update to create or update the values for the new object
fields you have added. In the hooks you can check the object type being operated on and skip any objects you don’t
care about. For example, if you added a new field to the products table:

sub object_end_of_create {
my ($self, S$args) = @_;
my $class = $args->{'class'};
my $object = $args->{'object'};
if ($class->isa('Bugzilla::Product') {
[...]
}
}

You will need to do this filtering for most of the hooks whose names begin with object_.

4.5. Extensions 57

BMO Documentation

4.5.5 Adding Admin Configuration Panels
If you add new functionality to Bugzilla, it may well have configurable options or parameters. The way to allow an
administrator to set those is to add a new configuration panel.

As well as using the config_add_panels hook, you will need a template to define the UI strings for the panel. See
the templates in template/en/default/admin/params for examples, and put your own template in template/en/
default/admin/params in your extension’s directory.

You can access param values from Templates using:

[% Param('param_name') %]

and from code using:

Bugzilla->params->{'param_name'}

4.5.6 Adding User Preferences

To add a new user preference:

e Call add_setting('setting name', ['some_option', 'another_option'], 'some_option') in
the install_before_final_checks hook. (The last parameter is the name of the option which should be the
default.)

e Add descriptions for the identifiers for your setting and choices (setting_name, some_option etc.) to
the hash defined in global/setting-descs.none.tmpl. Do this in a template hook: hook/global/
setting-descs-settings.none.tmpl. Your code can see the hash variable; just set more members in it.

 To change behavior based on the setting, reference it in templates using [% user.settings.setting_name.
value %]. Reference itin code using $user->settings->{'setting_name'}->{"'value'}. The value will
be one of the option tag names (e.g. some_option).

4.5.7 Altering Who Can Change What

Companies often have rules about which employees, or classes of employees, are allowed to change certain things in
the bug system. For example, only the bug’s designated QA Contact may be allowed to VERIFY the bug. Bugzilla has
been designed to make it easy for you to write your own custom rules to define who is allowed to make what sorts of
value transition.

By default, assignees, QA owners and users with editbugs privileges can edit all fields of bugs, except group restrictions
(unless they are members of the groups they are trying to change). Bug reporters also have the ability to edit some
fields, but in a more restrictive manner. Other users, without editbugs privileges, cannot edit bugs, except to comment
and add themselves to the CC list.

Because this kind of change is such a common request, we have added a specific hook for it that Extensions can call.
It’s called bug_check_can_change_field, and it’s documented in the Hooks documentation.

58 Chapter 4. Integration and Customization Guide

https://www.bugzilla.org/docs/tip/en/html/api/Bugzilla/Hook.html#bug_check_can_change_field

BMO Documentation

4.5.8 Checking Syntax

It’s not immediately obvious how to check the syntax of your extension’s Perl modules, if it contains any. Running
checksetup.pl might do some of it, but the errors aren’t necessarily massively informative.

perl -Mlib=1ib -MBugzilla -e 'BEGIN { Bugzilla->extensions; } use
Bugzilla::Extension: :ExtensionName: :Class;'

(run from $BUGZILLA_HOME) is what you need.

This documentation undoubtedly has bugs; if you find some, please file them here.

4.6 APIs

Bugzilla has a number of APIs that you can call in your code to extract information from and put information into
Bugzilla. Some are deprecated and will soon be removed. Which one to use? Short answer: the REST WebService APl
v1 should be used for all new integrations, but keep an eye out for version 2, coming soon.

The APIs currently available are as follows:

4.6.1 Ad-Hoc APIs

Various pages on Bugzilla are available in machine-parsable formats as well as HTML. For example, bugs can be
downloaded as XML, and buglists as CSV. CSV is useful for spreadsheet import. There should be links on the HTML
page to alternate data formats where they are available.

4.6.2 REST

Bugzilla has a REST API which is the currently-recommended API for integrating with Bugzilla. The current REST
API is version 1. It is stable, and so will not be changed in a backwardly-incompatible way.

This is the currently-recommended API for new development.

Endpoint: /rest

This documentation undoubtedly has bugs; if you find some, please file them here.

4.7 Authentication Delegation via APl Keys

Bugzilla provides a mechanism for web apps to request (with the user’s consent) an API key. API keys allow the web
app to perform any action as the user and are as a result very powerful. Because of this power, this feature is disabled
by default.

4.6. APIs 59

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

4.7.1 Authentication Flow

The authentication process begins by directing the user to th the Bugzilla site’s auth.cgi. For the sake of this example,
our application’s URL is http://app.example.org and the Bugzilla site is http://bugzilla.mozilla.org.

1. Provide a link or redirect the user to https.//bugzilla.mozilla.org/auth.cgi?callback=http://app.example.org/callback &description=
2. Assuming the user is agreeable, the following will happen:

1. Bugzilla will issue a POST request to http://app.example.org/callback with a the request body data being a JSON
object with keys client_api_key and client_api_login.

2. The callback, when responding to the POST request must return a JSON object with a key result. This result is
intended to be a unique token used to identify this transaction.

3. Bugzilla will then cause the user agent to redirect (using a GET request) to http://app.example.org/callback with
additional query string parameters client_api_login and callback_result.

4. At this point, the consumer now has the api key and login information. Be sure to compare the callback_result
to whatever result was initially sent back to Bugzilla.

3. Finally, you should check that the API key and login are valid, using the Who Am I REST resource.

Your application should take measures to ensure when receiving a user at your callback URL that you previously
redirected them to Bugzilla. The simplest method would be ensuring the callback URL always has the hostname and
path you specified, with only the query string parameters varying.

The description should include the name of your application, in a form that will be recognizable to users. This descrip-
tion is used in the API Keys tab in the Preferences page.

The API key passed to the callback will be valid until the user revokes it.

This documentation undoubtedly has bugs; if you find some, please file them here.

4.8 Adding an AuthO Custom Social Integration

Bugzilla can be added as a ‘Custom Social Connection’.

This documentation undoubtedly has bugs; if you find some, please file them here.

60 Chapter 4. Integration and Customization Guide

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

CHAPTER
FIVE

WEBSERVICE API REFERENCE

This Bugzilla installation has the following WebService APIs available (as of the last time you compiled the documen-
tation):

5.1 Core API v1

5.1.1 General

This is the standard REST API for external programs that want to interact with Bugzilla. It provides a REST interface
to various Bugzilla functions.

Basic Information

Data Format

The REST API only supports JSON input, and either JSON or JSONP output. So objects sent and received must be in
JSON format.

If you need JSONP output, you must set the Accept: application/javascript HTTP header and add a
callback parameter to name your callback.

Parameters may also be passed in as part of the query string for non-GET requests and will override any matching
parameters in the request body.

Example request which returns the current version of Bugzilla:

GET /rest/version HTTP/1.1
Host: bugzilla.example.com

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{

"version" : "4.2.9+"
}
Errors

When an error occurs over REST, an object is returned with the key error set to true.

61

BMO Documentation

The error contents look similar to:

{
"error": true,
"message": "Some message here",
"code": 123

}

To protect the application from large requests, Bugzilla returns a 302 redirect to the homepage when your query string
is too long. The current limit is 10 KB, which can accept roughly 1,000 bug IDs in the id parameter for the /rest/bug
method, but it could be smaller or may lead to a 414 URI Too Long HTTP error depending on the server configuration.
Split your query into multiple requests if you encounter the issue.

Common Data Types

The Bugzilla API uses the following various types of parameters:

type | description

int Integer.

dou- | A floating-point number.
ble
string| A string.

email| A string representing an email address. This value, when returned, may be filtered based on if the user is
logged in or not.

date | A specific date. Example format: YYYY-MM-DD.

date-| A date/time. Timezone should be in UTC wunless otherwise noted. Example format:
time | YYYY-MM-DDTHH24:MI:SSZ.

booleantrue or false.

base6dt A base64-encoded string. This is the only way to transfer binary data via the APL

ar- An array. There may be mixed types in an array. [and] are used to represent the beginning and end of
ray | arrays.

ob- | A mapping of keys to values. Called a “hash”, “dict”, or “map” in some other programming languages. The
ject | keys are strings, and the values can be any type. { and } are used to represent the beginning and end of
objects.

Parameters that are required will be displayed in bold in the parameters table for each API method.

Authentication

Some methods do not require you to log in. An example of this is Ger Bug. However, authenticating yourself allows
you to see non-public information, for example, a bug that is not publicly visible.

To authenticate yourself, you will need to use API keys:

API Keys

You can specify ‘X-BUGZILLA-API-KEY’ header with the API key as a value to any request, and you will be authen-
ticated as that user if the key is correct and has not been revoked.

You can set up an API key by using the AP/ Keys tab in the Preferences pages.

API keys may also be requested via Authentication Delegation.

62 Chapter 5. WebService API Reference

BMO Documentation

WARNING: It should be noted that additional authentication methods exist, but they are not recommended for use
and are likely to be deprecated in future versions of BMO, due to security concerns. These additional methods include
the following:

» username and password via Bugzilla_login and Bugzilla_password or simply login and password re-
spectively in query parameters.

* username and password via X-BUGZILLA-LOGIN and X-BUGZILLA-PASSWORD headers respectively.

* api key via Bugzilla_api_key or simply api_key in query parameters.

Useful Parameters

Many calls take common arguments. These are documented below and linked from the individual calls where these
parameters are used.

Including Fields

Many calls return an array of objects with various fields in the objects. (For example, Ger Bug returns a list of bugs
that have fields like id, summary, creation_time, etc.)

These parameters allow you to limit what fields are present in the objects, to improve performance or save some band-
width.

include_fields: The (case-sensitive) names of fields in the response data. Only the fields specified in the object
will be returned, the rest will not be included. Fields should be comma delimited.

Invalid field names are ignored.

Example request to Ger User:

GET /rest/user/1?include_fields=id,name

would return something like:

{

"users" : [
{
"id" i 1,
"name" : "user@domain.com"
}
1
}

Excluding Fields

exclude_fields: The (case-sensitive) names of fields in the return value. The fields specified will not be included
in the returned objects. Fields should be comma delimited.

Invalid field names are ignored.
Specifying fields here overrides include_fields, so if you specify a field in both, it will be excluded, not included.

Example request to Ger User:

GET /rest/user/17exclude_fields=name

would return something like:

5.1. Core API v1 63

BMO Documentation

{
"users" : [
{
"id" : 1,
"real_name" : "John Smith"
}
]
}

Some calls support specifying “subfields”. If a call states that it supports “subfield” restrictions, you can restrict
what information is returned within the first field. For example, if you call Ger Product with an include_fields
of components.name, then only the component name would be returned (and nothing else). You can include the main
field, and exclude a subfield.

There are several shortcut identifiers to ask for only certain groups of fields to be returned or excluded:

value description

_all | All possible fields are returned if this is specified in include_fields.

_de- | Default fields are returned if include_fields is empty or this is specified. This is useful if you want the
fault| default fields in addition to a field that is not normally returned.

_ex- | Extrafields are not returned by default and need to be manually specified in include_fields either by exact
tra field name, or adding _extra.

_cus4 Custom fields are normally returned by default unless this is added to exclude_fields. Also you can use
tom | itin include_fields if for example you want specific field names plus all custom fields. Custom fields are
normally only relevant to bug objects.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.2 Attachments

The Bugzilla API for creating, changing, and getting the details of attachments.

Get Attachment

This allows you to get data about attachments, given a list of bugs and/or attachment IDs. Private attachments will only
be returned if you are in the appropriate group or if you are the submitter of the attachment.

Request

To get all current attachments for a bug:

GET /rest/bug/(bug_id)/attachment

To get a specific attachment based on attachment ID:

GET /rest/bug/attachment/(attachment_id)

One of the below must be specified.

name type | description
bug_id int Integer bug ID.
attachment_id | int Integer attachment ID.

64 Chapter 5. WebService API Reference

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Response

{
"bugs" : {
"1345" [
{ (attachment) },
{ (attachment) }
1,
"9874" : [
{ (attachment) 1},
{ (attachment) }
1,
1,
"attachments" : {
"234" : { (attachment) },
"123" : { (attachment) },

An object containing two elements: bugs and attachments.

The attachments for the bug that you specified in the bug_id argument in input are returned in bugs on output. bugs
is a object that has integer bug IDs for keys and the values are arrays of objects as attachments. (Fields for attachments

are described below.)

For the attachment that you specified directly in attachment_id, they are returned in attachments on output. This

is a object where the attachment ids point directly to objects describing the individual attachment.

The fields for each attachment (where it says (attachment) in the sample response above) are:

name type | description

data base64 The raw data of the attachment, encoded as Base64.
size int The length (in bytes) of the attachment.

cre- date- | The time the attachment was created.

ation_time | time

last_change_date- | The last time the attachment was modified.

time
id int The numeric ID of the attachment.
bug_id int The numeric ID of the bug that the attachment is attached to.

file_name | string| The file name of the attachment.

summary | string| A short string describing the attachment.

con- string| The MIME type of the attachment.
tent_type

is_private | booledntrue if the attachment is private (only visible to a certain group called the “insidergroup”,

false otherwise.

is_obsolete| booledantrue if the attachment is obsolete, false otherwise.

is_patch booledntrue if the attachment is a patch, false otherwise.

creator string| The login name of the user that created the attachment.
cre- ob- An object containing detailed user information for the creator. To see the keys included in the
ator_detail | ject user detail object, see Ger Bug.
flags ar- Array of objects, each containing the information about the flag currently set for each attach-
ray ment. Each flag object contains items described in the Flag object below.
Flag object:

5.1. Core API v1

65

BMO Documentation

name type | description

id int The ID of the flag.

name string | The name of the flag.

type_id int The type ID of the flag.

cre- date- | The timestamp when this flag was originally created.

ation_date time

modifica- date- | The timestamp when the flag was last modified.

tion_date time

status string | The current status of the flag such as ?, +, or -.

setter string | The login name of the user who created or last modified the flag.

requestee string | The login name of the user this flag has been requested to be granted or denied. Note, this
field is only returned if a requestee is set.

Errors
This method can throw all the same errors as Ger Bug. In addition, it can also throw the following error:

Lt}

* 304 (Auth Failure, Attachment is Private) You specified the id of a private attachment in the “attachment_ids
argument, and you are not in the “insider group” that can see private attachments.

Create Attachment

This allows you to add an attachment to a bug in Bugzilla.
Request

To create attachment on a current bug:

POST /rest/bug/(bug_id)/attachment

{
"ids" : [35 1,
"is_patch" : true,
"comment" : "This is a new attachment comment",
"summary" : "Test Attachment",
"content_type" : "text/plain",
"data" : "(Some base64 encoded content)",
"file_name" : "test_attachment.patch",
"obsoletes" : [],
"is_private" : false,
"flags" : [
{
"name" : "review",
"status" : "?",
"requestee" : "user@bugzilla.org",
"new" : true
}
1
}

The params to include in the POST body, as well as the returned data format, are the same as below. The bug_id param
will be overridden as it it pulled from the URL path.

66 Chapter 5. WebService API Reference

BMO Documentation

name | type| description

ids ar- | The IDs or aliases of bugs that you want to add this attachment to. The same attachment and
ray | comment will be added to all these bugs.

data | base64The content of the attachment. You must encode it in base64 using an appropriate client library
such as MIME: : Base64 for Perl.

file_namestring The “file name” that will be displayed in the UI for this attachment and also downloaded copies will

be given.
sum- | string A short string describing the attachment.
mary
con- string The MIME type of the attachment, like text/plain or image/png.
tent_type
com- | string A comment to add along with this attachment.
ment

is_patch boolgatrue if Bugzilla should treat this attachment as a patch. If you specify this, you do not need to
specify a content_type. The content_type of the attachment will be forced to text/plain.
Defaults to false if not specified.

is_privatboolgarue if the attachment should be private (restricted to the “insidergroup”), false if the attachment
should be public. Defaults to false if not specified.

flags ar- | Flags objects to add to the attachment. The object format is described in the Flag object below.
ray
bug_flagar- | Flag objects to add to the attachment’s bug. See the flags param for Create Bug for the object
ray | format.

Flag object:

To create a flag, at least the status and the type_id or name must be provided. An optional requestee can be passed
if the flag type is requestable to a specific user.

name type | description

name string | The name of the flag type.

type_id int The internal flag type ID.

status string | The flags new status (i.e. “?”, “+”, “-” or “X” to clear a flag).

requestee | string | The login of the requestee if the flag type is requestable to a specific user.

Response
{
"ids" : [
"2797"
]
}
name | type | description
ids array | Attachment IDs created.
Errors

This method can throw all the same errors as Get Bug, plus:
* 129 (Flag Status Invalid) The flag status is invalid.

* 130 (Flag Modification Denied) You tried to request, grant, or deny a flag but only a user with the required
permissions may make the change.

5.1. Core API v1 67

BMO Documentation

* 131 (Flag not Requestable from Specific Person) You can’t ask a specific person for the flag.

* 133 (Flag Type not Unique) The flag type specified matches several flag types. You must specify the type id
value to update or add a flag.

* 134 (Inactive Flag Type) The flag type is inactive and cannot be used to create new flags.

¢ 140 (Markdown Disabled) You tried to set the “is_markdown” flag of the comment to true but the Markdown
feature is not enabled.

* 600 (Attachment Too Large) You tried to attach a file that was larger than Bugzilla will accept.

¢ 601 (Invalid MIME Type) You specified a “content_type” argument that was blank, not a valid MIME type, or
not a MIME type that Bugzilla accepts for attachments.

* 603 (File Name Not Specified) You did not specify a valid for the “file_name” argument.
* 604 (Summary Required) You did not specify a value for the “summary” argument.

* 606 (Empty Data) You set the “data” field to an empty string.

Update Attachment

This allows you to update attachment metadata in Bugzilla.
Request

To update attachment metadata on a current attachment:

PUT /rest/bug/attachment/(attachment_id)

{
"ids" : [2796 1],
"summary" : "Test XML file",
"comment" : "Changed this from a patch to a XML file",
"content_type" : "text/xml",
"is_patch" : 0
}
name type | description
attachment_id | int Integer attachment ID.
ids array | The IDs of the attachments you want to update.

68 Chapter 5. WebService API Reference

BMO Documentation

name \ type | description
file_namhestring The “file name” that will be displayed in the UI for this attachment.

sum- string A short string describing the attachment.

mary

com- string An optional comment to add to the attachment’s bug.

ment

con- string The MIME type of the attachment, like text/plain or image/png.
tent_type

is_patch booleartrue if Bugzilla should treat this attachment as a patch. If you specify this, you do not need to
specify a content_type. The content_type of the attachment will be forced to text/plain.
is_privatebooleartrue if the attachment should be private (restricted to the “insidergroup”), false if the attachment
should be public.

is_obsoleteooleart rue if the attachment is obsolete, false otherwise.

flags ar- An array of Flag objects with changes to the flags. The object format is described in the Flag object
ray | below.

bug_flagsar- An optional array of Flag objects with changes to the flags of the attachment’s bug. See the flags
ray | param for Update Bug for the object format.

Flag object:

The following values can be specified. At least the status and one of type_id, id, or name must be specified. If a
type_id or name matches a single currently set flag, the flag will be updated unless new is specified.

name | type | description
name | string | The name of the flag that will be created or updated.
type_id| int The internal flag type ID that will be created or updated. You will need to specify the type_id if
more than one flag type of the same name exists.
status | string | The flags new status (i.e. “7”, “+”, “-” or “X” to clear a flag).
re- string | The login of the requestee if the flag type is requestable to a specific user.
ques-
tee
id int Use ID to specify the flag to be updated. You will need to specify the id if more than one flag is
set of the same name.
new boolean Set to true if you specifically want a new flag to be created.
Response
{
"attachments" : [
{
"changes" : {
"content_type" : {
"added" : "text/xml",
"removed" : "text/plain”
3
"is_patch" : {
"added" : "0",
"removed" : "1"
1},
"summary" : {
"added" : "Test XML file",
"removed" : "test patch"

(continues on next page)

5.1. Core API v1 69

BMO Documentation

(continued from previous page)

}
1,
"id" : 2796,
"last_change_time" : "2014-09-29T14:41:53Z"
}
]
}

attachments (array) Change objects with the following items:

name type

description

id int

The ID of the attachment that was
updated.

last_change_time datetime

The exact time that this update was
done at, for this attachment. If no
update was done (that is, no fields
had their values changed and no
comment was added) then this will
instead be the last time the attach-
ment was updated.

changes object

The changes that were actually done
on this attachment. The keys are
the names of the fields that were
changed, and the values are an ob-
ject with two items:

e added: (string) The values
that were added to this field.
Possibly a comma-and-space-
separated list if multiple val-
ues were added.

* removed: (string) The values
that were removed from this
field.

Errors
This method can throw all the same errors as Get Bug, plus:

* 129 (Flag Status Invalid) The flag status is invalid.

permissions may make the change.

the flag.

value to update or add a flag.

130 (Flag Modification Denied) You tried to request, grant, or deny a flag but only a user with the required

131 (Flag not Requestable from Specific Person) You can’t ask a specific person for the flag.

132 (Flag not Unique) The flag specified has been set multiple times. You must specify the id value to update

133 (Flag Type not Unique) The flag type specified matches several flag types. You must specify the type id

134 (Inactive Flag Type) The flag type is inactive and cannot be used to create new flags.

¢ 140 (Markdown Disabled) You tried to set the “is_markdown” flag of the “comment” to true but Markdown

feature is not enabled.

70

Chapter 5. WebService API Reference

BMO Documentation

* 601 (Invalid MIME Type) You specified a “content_type” argument that was blank, not a valid MIME type, or
not a MIME type that Bugzilla accepts for attachments.

* 603 (File Name Not Specified) You did not specify a valid for the “file_name” argument.

* 604 (Summary Required) You did not specify a value for the “summary” argument.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.3 Bugs

The REST API for creating, changing, and getting the details of bugs.

This part of the Bugzilla REST API allows you to file new bugs in Bugzilla and to get information about existing bugs.

Get Bug

Gets information about particular bugs in the database.
Request

To get information about a particular bug using its ID or alias:

GET /rest/bug/(id_or_alias)

You can also use Search Bugs to return more than one bug at a time by specifying bug IDs as the search terms.

GET /rest/bug?id=12434,43421

name type description
id_or_alias | mixed | An integer bug ID or a bug alias string.

Response

{
"faults": [],

"bugs": [
{
"assigned_to_detail": {
"id": 2,
"real_name": "Test User",
"nick": "user",
"name": "user@bugzilla.org",
"email": "user@bugzilla.org"
1,
"flags": [
{
"type_id": 11,
"modification_date": "2014-09-28T21:03:47Z",
"name": "blocker",
"status": "?",
"id": 2906,

(continues on next page)

5.1. Core API v1 71

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

(continued from previous page)

"setter": "user@bugzilla.org",

"creation_date":
}
1,
"resolution":
"id": 35,
"type": "defect",

"ga_contact": ,
"triage_owner": "",
"version": "1.0",

"status": "RESOLVED",

"INVALID",

"2014-09-28T21:03:47Z"

"creator": "user@bugzilla.org",

"cf_drop_down": "---",
"summary": "test bug",

"last_change_time": "2014-09-23T19:12:

"platform": "All",

172",

"url": "",
"classification": "Unclassified",
"cc_detail": [
{
"id": 786,
"real_name": "Foo Bar",
"nick": "foo",
"name": "foo@bar.com",
"email": "foo@bar.com"
1
1,
"priority": "P1",

"is_confirmed":
"creation_time":

true,

"2000-07-25T13:50:04Z",

"assigned_to": "user@bugzilla.org",
"flags": [],

"alias": null,

"cf_large_text": "",

"groups": [1,

"op_sys": "All",

"cf_bug_id": null,

"depends_on": [],
"is_cc_accessible":
"is_open": false,

"cf_ga_list_4": "---",
"keywords": [],
"cc": [

"foo@bar.com",
1,
"see_also": [1,
"deadline": null,

"is_creator_accessible":

"whiteboard": ,
"dupe_of": null,
"duplicates": [],

"target_milestone": "---

true,

true,

(continues on next page)

72

Chapter 5. WebService APl Reference

BMO Documentation

(continued from previous page)

"cf_mulitple_select":
"component":
"severity": "critical",
null,
"FoodReplicator",

"cf_date":
"product":

"creator_detail": {

"id": 28,

"real_name":

"nick":

"email":

e

"hello",
"namachi",
"name": "user@bugzilla.org",

"namachi@netscape.com'

"cf_free_text": ,

"blocks": [1,

"regressed_by": [],

"regressions":

1,

"comment_count": 12

}
]
}

1,
"SaltSprinkler",

bugs (array) Each bug object contains information about the bugs with valid ids containing the following items:

These fields are returned by default or by specifying _default in include_fields.

name type description

actual_time double The total number of hours that this bug has taken so far. If you are not in the time-tracking group,
alias string The unique alias of this bug. A null value will be returned if this bug has no alias.

assigned_to string The login name of the user to whom the bug is assigned.

assigned_to_detail object An object containing detailed user information for the assigned_to. To see the keys included in the
blocks array The IDs of bugs that are “blocked” by this bug.

cc array The login names of users on the CC list of this bug.

cc_detail array Array of objects containing detailed user information for each of the cc list members. To see the k
classification string The name of the current classification the bug is in.

component string The name of the current component of this bug.

creation_time datetime | When the bug was created.

creator string The login name of the person who filed this bug (the reporter).

creator_detail object An object containing detailed user information for the creator. To see the keys included in the user
deadline string The day that this bug is due to be completed, in the format YYYY-MM-DD.

depends_on array The IDs of bugs that this bug “depends on”.

dupe_of int The bug ID of the bug that this bug is a duplicate of. If this bug isn’t a duplicate of any bug, this v
duplicates array The ids of bugs that are marked as duplicate of this bug.

estimated_time double The number of hours that it was estimated that this bug would take. If you are not in the time-tracl
flags array An array of objects containing the information about flags currently set for the bug. Each flag obije
groups array The names of all the groups that this bug is in.

id int The unique numeric ID of this bug.

is_cc_accessible boolean | If true, this bug can be accessed by members of the CC list, even if they are not in the groups the t
is_confirmed boolean | true if the bug has been confirmed. Usually this means that the bug has at some point been move
is_open boolean | true if this bug is open, false if it is closed.

is_creator_accessible | boolean | If true, this bug can be accessed by the creator of the bug, even if they are not a member of the g
keywords array Each keyword that is on this bug.

5.1. Core API v1

73

BMO Documentation

Table 1 - continued from previous page

name type description

last_change_time datetime | When the bug was last changed.

comment_count int Number of comments associated with the bug.

op_sys string The name of the operating system that the bug was filed against.

platform string The name of the platform (hardware) that the bug was filed against.

priority string The priority of the bug.

product string The name of the product this bug is in.

ga_contact string The login name of the current QA Contact on the bug.

ga_contact_detail object An object containing detailed user information for the qa_contact. To see the keys included in the
regressed_by array The IDs of bugs that introduced this bug.

regressions array The IDs of bugs that are introduced by this bug.

remaining_time double The number of hours of work remaining until work on this bug is complete. If you are not in the ti
resolution string The current resolution of the bug, or an empty string if the bug is open.

see_also array The URLs in the See Also field on the bug.

severity string The current severity of the bug.

status string The current status of the bug.

summary string The summary of this bug.

target_milestone string The milestone that this bug is supposed to be fixed by, or for closed bugs, the milestone that it was
type string The type of the bug.

update_token string The token that you would have to pass to the process_bug.cgi page in order to update this bug.
url string A URL that demonstrates the problem described in the bug, or is somehow related to the bug repo
version string The version the bug was reported against.

whiteboard string The value of the “status whiteboard” field on the bug.

Custom fields:

Every custom field in this installation will also be included in the return value. Most fields are returned as strings.
However, some field types have different return values.

Normally custom fields are returned by default similar to normal bug fields or you can specify only custom fields by

using _custom in include_fields.

Extra fields:

These fields are returned only by specifying _extra or the field name in include_fields.

name type| description

attach- ar- | Each array item is an Attachment object. See Ger Attachment for details of the object.

ments ray

com- ar- | Each array item is a Comment object. See Get Comments for details of the object.

ments ray

counts ob- | An object containing the numbers of the items in the following fields: attachments,
ject | cc, comments, keywords, blocks, depends_on, regressed_by, regressions and

duplicates.

descrip- string The description (initial comment) of the bug.

tion

filed_via | string How the bug was filed, e.g. standard_form.

history ar- | Each array item is a History object. See Bug History for details of the object.
ray

tags ar- | Each array item is a tag name. Note that tags are personal to the currently logged in user and
ray | are not the same as comment tags.

triage_ownerstring The login name of the Triage Owner of the bug’s component.

triage_ownerobetail An object containing detailed user information for the triage_owner. To see the keys included
ject | in the user detail object, see below.

74

Chapter 5. WebService API Reference

BMO Documentation

User object:

name type | description
id int The user ID for this user.
real_name | string | The ‘real’ name for this user, if any.
nick string | The user’s nickname. Currently this is extracted from the real_name, name or email field.
name string | The user’s Bugzilla login.
email string | The user’s email address. Currently this is the same value as the name.
Flag object:
name type | description
id int The ID of the flag.
name string | The name of the flag.
type_id int The type ID of the flag.
cre- date- | The timestamp when this flag was originally created.
ation_date time
modifica- date- | The timestamp when the flag was last modified.
tion_date time
status string | The current status of the flag.
setter string | The login name of the user who created or last modified the flag.
requestee string | The login name of the user this flag has been requested to be granted or denied. Note, this
field is only returned if a requestee is set.

Custom field object:

You can specify to only return custom fields by specifying _custom or the field name in include_fields.

* Bug ID Fields: (int)

* Multiple-Selection Fields: (array of strings)

¢ Date/Time Fields: (datetime)

Errors

* 100 (Invalid Bug Alias) If you specified an alias and there is no bug with that alias.

¢ 101 (Invalid Bug ID) The bug_id you specified doesn’t exist in the database.

* 102 (Access Denied) You do not have access to the bug_id you specified.

Bug History

Gets the history of changes for particular bugs in the database.

Request

To get the history for a specific bug ID:

GET /rest/bug/(id)/history

To get the history for a bug since a specific date:

GET /rest/bug/(id)/history?new_since=YYYY-MM-DD

5.1. Core API v1

75

BMO Documentation

name type description
id mixed An integer bug ID or alias.
new_since | datetime | A datetime timestamp to only show history since.

Response
{
"bugs": [
{

"alias": null,
"history": [
{
"when": "2014-09-23T19:12:172",
"who": "user@bugzilla.org",
"changes": [
{
"added": "P1",
"field_name": "priority",
"removed": "P2"

"removed": "blocker",
"field_name": "severity",
"added": "critical"

1
3,
{
"when": "2014-09-28T21:03:47Z2",
"who": "user@bugzilla.org",
"changes": [
{
"added": "blocker?",
"removed": "",
"field_name": "flagtypes.name"
}
1
}
1,
"id": 35

bugs (array) Bug objects each containing the following items:

name | type | description

id int The numeric ID of the bug.

alias string | The unique alias of this bug. A null value will be returned if this bug has no alias.
history | array | An array of History objects.

History object:

76 Chapter 5. WebService API Reference

BMO Documentation

name | type description

when | date- The date the bug activity/change happened.
time
who string | The login name of the user who performed the bug change.

changes| array An array of Change objects which contain all the changes that happened to the bug at this time
(as specified by when).

Change object:
name type| description
field_nameg string The name of the bug field that has changed.
re- string The previous value of the bug field which has been deleted by the change.
moved
added string The new value of the bug field which has been added by the change.
attach- int | The ID of the attachment that was changed. This only appears if the change was to an attachment,
ment_id otherwise attachment_id will not be present in this object.
Errors

Same as Get Bug.

Search Bugs

Allows you to search for bugs based on particular criteria.
Request

To search for bugs:

GET /rest/bug

Unless otherwise specified in the description of a parameter, bugs are returned if they match exactly the criteria you
specify in these parameters. That is, we don’t match against substrings—if a bug is in the “Widgets” product and you
ask for bugs in the “Widg” product, you won’t get anything.

Criteria are joined in a logical AND. That is, you will be returned bugs that match all of the criteria, not bugs that
match any of the criteria.

Each parameter can be either the type it says, or a list of the types it says. If you pass an array, it means “Give me bugs
with any of these values.” For example, if you wanted bugs that were in either the “Foo” or “Bar” products, you’d pass:

GET /rest/bug?product=Foo&product=Bar

Some Bugzillas may treat your arguments case-sensitively, depending on what database system they are using. Most
commonly, though, Bugzilla is not case-sensitive with the arguments passed (because MySQL is the most-common
database to use with Bugzilla, and MySQL is not case sensitive).

In addition to the fields listed below, you may also use criteria that is similar to what is used in the Advanced Search
screen of the Bugzilla UL This includes fields specified by Search by Change History and Custom Search. The
easiest way to determine what the field names are and what format Bugzilla expects is to first construct your query
using the Advanced Search UlI, execute it and use the query parameters in they URL as your query for the REST call.

5.1. Core API v1 77

BMO Documentation

name type description

alias string The unique alias of this bug. A null value will be returned if this bug has no alias.

assigned_to string The login name of a user that a bug is assigned to.

component string The name of the Component that the bug is in. Note that if there are multiple Components with the sa

count_only boolean | If set to true, an object with a single key called “bug_count” will be returned which is the number of t

creation_time datetime | Searches for bugs that were created at this time or later. May not be an array.

creator string The login name of the user who created the bug. You can also pass this argument with the name repo

description string The description (initial comment) of the bug.

filed_via string Searches for bugs that were created with this method.

id int The numeric ID of the bug.

last_change_time | datetime | Searches for bugs that were modified at this time or later. May not be an array.

limit int Limit the number of results returned. If the value is unset, zero or greater than the maximum value set

longdescs.count | int The number of comments a bug has. The bug’s description is the first comment. For example, to find

offset int Used in conjunction with the 1imit argument, offset defines the starting position for the search. Fo

op_sys string The “Operating System” field of a bug.

platform string The Platform (sometimes called “Hardware”) field of a bug.

priority string The Priority field on a bug.

product string The name of the Product that the bug is in.

quicksearch string Search for bugs using quicksearch syntax.

resolution string The current resolution—only set if a bug is closed. You can find open bugs by searching for bugs with

severity string The Severity field on a bug.

status string The current status of a bug (not including its resolution, if it has one, which is a separate field above).

summary string Searches for substrings in the single-line Summary field on bugs. If you specify an array, then bugs w

tags string Searches for a bug with the specified tag. If you specify an array, then any bugs that match any of the

target_milestone | string The Target Milestone field of a bug. Note that even if this Bugzilla does not have the Target Milestone

ga_contact string The login name of the bug’s QA Contact. Note that even if this Bugzilla does not have the QA Contac

triage_owner string The login name of the Triage Owner of a bug’s component.

type string The Type field on a bug.

url string The “URL” field of a bug.

version string The Version field of a bug.

whiteboard string Search the “Status Whiteboard” field on bugs for a substring. Works the same as the summary field de
Response

The same as Ger Bug.

Errors

If you specify an invalid value for a particular field, you just won’t get any results for that value.

* 1000 (Parameters Required) You may not search without any search terms.

Create Bug

This allows you to create a new bug in Bugzilla. If you specify any invalid fields, an error will be thrown stating which
field is invalid. If you specify any fields you are not allowed to set, they will just be set to their defaults or ignored.

You cannot currently set all the items here that you can set on enter_bug.cgi.

The WebService interface may allow you to set things other than those listed here, but realize that anything undocu-
mented here may likely change in the future.

Request

To create a new bug in Bugzilla.

78

Chapter 5. WebService API Reference

BMO Documentation

POST /rest/bug

{
"product" : "TestProduct",
"component" : "TestComponent",
"version" : "unspecified",
"summary" : "'This is a test bug - please disregard",
"alias" : "SomeAlias",
"op_sys" : "All",
"priority" : "P1",
"rep_platform" : "AIl"
}

Some params must be set, or an error will be thrown. These params are marked in bold.

Some parameters can have defaults set in Bugzilla, by the administrator. If these parameters have defaults set, you can

omit them. These parameters are marked (defaulted).

Clients that want to be able to interact uniformly with multiple Bugzillas should always set both the params marked
required and those marked (defaulted), because some Bugzillas may not have defaults set for (defaulted) parameters,

and then this method will throw an error if you don’t specify them.

5.1. Core API v1

79

BMO Documentation

name| type| description

prod- | string The name of the product the bug is being filed against.

uct

com- | string The name of a component in the product above.

po-

nent

sum- | string A brief description of the bug being filed.

mary

ver- | string A version of the product above; the version the bug was found in.

sion

de- string (defaulted) The description (initial comment) of the bug. Some Bugzilla installations require this to

scrip- not be blank.

tion

filed_vistring (defaulted) How the bug is being filed. It will be api by default when filing through the API.

op_sys string (defaulted) The operating system the bug was discovered on.

plat- | string (defaulted) What type of hardware the bug was experienced on.

form

pri- string (defaulted) What order the bug will be fixed in by the developer, compared to the developer’s other

ority bugs.

sever- | string (defaulted) How severe the bug is.

ity

type | string (defaulted) The basic category of the bug. Some Bugzilla installations require this to be specified.

alias | string The alias for the bug that can be used instead of a bug number when accessing this bug. Must be
unique in all of this Bugzilla.

as- string A user to assign this bug to, if you don’t want it to be assigned to the component owner.

signed| to

cc ar- | An array of usernames to CC on this bug.

ray

com- | booleaff set to true, the description is private, otherwise it is assumed to be public.

ment_js_private

groups| ar- | An array of group names to put this bug into. You can see valid group names on the Permissions tab

ray | of the Preferences screen, or, if you are an administrator, in the Groups control panel. If you don’t

specify this argument, then the bug will be added into all the groups that are set as being “Default”
for this product. (If you want to avoid that, you should specify groups as an empty array.)

ga_contacting If this installation has QA Contacts enabled, you can set the QA Contact here if you don’t want to
use the component’s default QA Contact.

sta- string The status that this bug should start out as. Note that only certain statuses can be set on bug creation.

tus

res- string If you are filing a closed bug, then you will have to specify a resolution. You cannot currently specify

olu- a resolution of DUPLICATE for new bugs, though. That must be done with Update Bug.

tion

tar- string A valid target milestone for this product.

get_milestong

flags | ar- | Flags objects to add to the bug. The object format is described in the Flag object below.
ray

key- | ar- | One or more valid keywords to add to this bug.

words | ray

de- ar- | One or more valid bug ids that this bug depends on.

pend- | ray

son

blocked ar- | One or more valid bug ids that this bug blocks.
ray

re- ar- | One or more valid bug ids that introduced this bug.

gressed_tay

80 Chapter 5. WebService API Reference

BMO Documentation

Flag object:

To create a flag, at least the status and the type_id or name must be provided. An optional requestee can be passed
if the flag type is requestable to a specific user.

name type | description

name string | The name of the flag type.

type_id int The internal flag type ID.

status string | The flags new status (i.e. “?”, “+”, “-” or “X” to clear flag).

requestee | string | The login of the requestee if the flag type is requestable to a specific user.

In addition to the above parameters, if your installation has any custom fields, you can set them just by passing in the
name of the field and its value as a string.

Response
{
"id" : 12345
}
name | type | description
id int This is the ID of the newly-filed bug.
Errors

* 51 (Invalid Object) You specified a field value that is invalid. The error message will have more details.

103 (Invalid Alias) The alias you specified is invalid for some reason. See the error message for more details.

104 (Invalid Field) One of the drop-down fields has an invalid value, or a value entered in a text field is too long.
The error message will have more detail.

105 (Invalid Component) You didn’t specify a component.

106 (Invalid Product) Either you didn’t specify a product, this product doesn’t exist, or you don’t have permission
to enter bugs in this product.

107 (Invalid Summary) You didn’t specify a summary for the bug.

116 (Dependency Loop) You specified values in the “blocks” and “depends_on” fields, or the “regressions” and
“regressed_by” fields, that would cause a circular dependency between bugs.

120 (Group Restriction Denied) You tried to restrict the bug to a group which does not exist, or which you cannot
use with this product.

129 (Flag Status Invalid) The flag status is invalid.

130 (Flag Modification Denied) You tried to request, grant, or deny a flag but only a user with the required
permissions may make the change.

131 (Flag not Requestable from Specific Person) You can’t ask a specific person for the flag.

133 (Flag Type not Unique) The flag type specified matches several flag types. You must specify the type id
value to update or add a flag.

134 (Inactive Flag Type) The flag type is inactive and cannot be used to create new flags.

135 (Bug Type Required) You didn’t specify a type for the bug.

504 (Invalid User) Either the QA Contact, Assignee, or CC lists have some invalid user in them. The error
message will have more details.

5.1. Core API v1 81

BMO Documentation

Update Bug

Allows you to update the fields of a bug. Automatically sends emails out about the changes.
Request

To update the fields of a current bug.

PUT /rest/bug/(id_or_alias)

{
"ids" : [35],
"status" : "IN_PROGRESS",
"keywords" : {
"add" : ["funny", "stupid"]
}
}

The params to include in the PUT body as well as the returned data format, are the same as below. You can specify
the ID or alias of the bug to update either in the URL path and/or in the ids param. You can use both and they will be
combined so you can edit more than one bug at a time.

name type description
id_or_alias | mixed | An integer bug ID or alias.
ids array | The IDs or aliases of the bugs that you want to modify.

All following fields specify the values you want to set on the bugs you are updating.

name type description

alias string The alias for the bug that can be used
instead of a bug number when ac-
cessing this bug. Must be unique in
all of this Bugzilla.

assigned_to string The full login name of the user this
bug is assigned to.

blocks object (Same as regressed_by below)

depends_on object (Same as regressed_by below)

regressions object (Same as regressed_by below)

continues on next page

82 Chapter 5. WebService API Reference

BMO Documentation

Table 3 - continued from previous page

name

type

description

regressed_by

object

These specify the bugs that this bug
blocks, depends on, regresses, or is
regressed by, respectively. To set
these, you should pass an object as
the value. The object may contain
the following items:

* add (array) Bug IDs to add to
this field.

* remove (array) Bug IDs to re-
move from this field. If the
bug IDs are not already in the
field, they will be ignored.

* set (array of) An exact set of
bug IDs to set this field to,
overriding the current value.
If you specify set, then add
and remove will be ignored.

cC

object

The users on the cc list. To modify
this field, pass an object, which may
have the following items:

* add (array) User names to add
to the CC list. They must be
full user names, and an error
will be thrown if you pass in
an invalid user name.

* remove (array) User names to
remove from the CC list. They
must be full user names, and
an error will be thrown if you
pass in an invalid user name.

is_cc_accessible

boolean

Whether or not users in the CC list
are allowed to access the bug, even
if they aren’t in a group that can nor-
mally access the bug.

comment

object

A comment on the change. The ob-
jectmay contain the following items:
* body (string) The actual text
of the comment. For com-
patibility with the parameters
to Create Comments, you can
also call this field comment, if

you want.

e is_private (boolean)
Whether the comment is
private or not. If you try to
make a comment private and
you don’t have the permission
to, an error will be thrown.

continues on next page

5.1. Core API v1

83

BMO Documentation

Table 3 - continued from previous page

name

type

description

comment_is_private

object

This is how you update the pri-
vacy of comments that are already
on a bug. This is a object, where
the keys are the int ID of com-
ments (not their count on a bug,
like #1, #2, #3, but their globally-
unique ID, as returned by Ger Com-
ments and the value is a boolean
which specifies whether that com-
ment should become private (true)
or public (false).

The comment IDs must be valid for
the bug being updated. Thus, it is
not practical to use this while updat-
ing multiple bugs at once, as a single
comment ID will never be valid on
multiple bugs.

component

string

The Component the bug is in.

deadline

date

The Deadline field is a date specify-
ing when the bug must be completed
by, in the format YYYY-MM-DD.

dupe_of

int

The bug that this bug is a duplicate
of. If you want to mark a bug as a
duplicate, the safest thing to do is to
set this value and not set the status
or resolution fields. They will
automatically be set by Bugzilla to
the appropriate values for duplicate
bugs.

estimated_time

double

The total estimate of time required to
fix the bug, in hours. This is the fo-
tal estimate, not the amount of time
remaining to fix it.

flags

array

An array of Flag change objects.
The items needed are described be-
low.

continues on next page

84

Chapter 5. WebService API Reference

BMO Documentation

Table 3 - continued from previous page

name

type

description

groups

object

The groups a bug is in. To modify
this field, pass an object, which may
have the following items:

* add (array) The names of
groups to add. Passing in an
invalid group name or a group
that you cannot add to this
bug will cause an error to be
thrown.

* remove (array) The names of
groups to remove. Passing in
an invalid group name or a
group that you cannot remove
from this bug will cause an er-
ror to be thrown.

keywords

object

Keywords on the bug. To modify
this field, pass an object, which may
have the following items:

* add (array) The names of
keywords to add to the field
on the bug. Passing some-
thing that isn’t a valid key-
word name will cause an error
to be thrown.

» remove (array) The names of
keywords to remove from the
field on the bug. Passing
something that isn’t a valid
keyword name will cause an
error to be thrown.

* set (array) An exact set of
keywords to set the field to,
on the bug. Passing some-
thing that isn’t a valid key-
word name will cause an error
to be thrown. Specifying set
overrides add and remove.

op_sys

string

The Operating System (“OS”) field
on the bug.

platform

string

The Platform or “Hardware” field on
the bug.

priority

string

The Priority field on the bug.

continues on next page

5.1. Core API v1

85

BMO Documentation

Table 3 - continued from previous page

name

type

description

product

string

The name of the product that the
bug is in. If you change this, you
will probably also want to change
target_milestone, version, and
component, since those have differ-
ent legal values in every product.

If you cannot change the
target_milestone field, it
will be reset to the default for the
product, when you move a bug to a
new product.

You may also wish to add or re-
move groups, as which groups are
valid on a bug depends on the prod-
uct. Groups that are not valid in
the new product will be automat-
ically removed, and groups which
are mandatory in the new product
will be automatically added, but no
other automatic group changes will
be done.

Note: Users can only move a bug
into a product if they would nor-
mally have permission to file new
bugs in that product.

(qa_contact

string

The full login name of the bug’s QA
Contact.

is_creator_accessible

boolean

Whether or not the bug’s reporter is
allowed to access the bug, even if
they aren’t in a group that can nor-
mally access the bug.

remaining_time

double

How much work time is remain-
ing to fix the bug, in hours. If
you set work_time but don’t explic-
itly set remaining_time, then the
work_time will be deducted from
the bug’s remaining_time.

reset_assigned_to

boolean

If true, the assigned_to field will
be reset to the default for the com-
ponent that the bug is in. (If you
have set the component at the same
time as using this, then the compo-
nent used will be the new compo-
nent, not the old one.)

continues on next page

86

Chapter 5. WebService API Reference

BMO Documentation

Table 3 - continued from previous page

name

type

description

reset_qa_contact

boolean

If true, the ga_contact field will
be reset to the default for the com-
ponent that the bug is in. (If you
have set the component at the same
time as using this, then the compo-
nent used will be the new compo-
nent, not the old one.)

resolution

string

The current resolution. May only
be set if you are closing a bug or if
you are modifying an already-closed
bug. Attempting to set the resolution
to any value (even an empty or null
string) on an open bug will cause an
error to be thrown.

Note: If you change the status
field to an open status, the resolution
field will automatically be cleared,
so you don’t have to clear it manu-
ally.

see_also

object

The See Also field on a bug, specify-
ing URLSs to bugs in other bug track-
ers. To modify this field, pass an ob-
ject, which may have the following
items:

* add (array) URLs to add to the
field. Each URL must be a
valid URL to a bug-tracker, or
an error will be thrown.

* remove (array) URLs to re-
move from the field. Invalid
URLSs will be ignored.

severity

string

The Severity field of a bug.

status

string

The status you want to change the
bug to. Note that if a bug is chang-
ing from open to closed, you should
also specify a resolution.

summary

string

The Summary field of the bug.

target_milestone

string

The bug’s Target Milestone.

type

string

The Type field on the bug.

url

string

The “URL” field of a bug.

version

string

The bug’s Version field.

whiteboard

string

The Status Whiteboard field of a
bug.

continues on next page

5.1. Core API v1

87

BMO Documentation

Table 3 - continued from previous page

name type

description

work_time double

The number of hours worked on
this bug as part of this change. If
you set work_time but don’t explic-
itly set remaining_time, then the
work_time will be deducted from
the bug’s remaining_time.

You can also set the value of any custom field by passing its name as a parameter, and the value to set the field to. For

multiple-selection fields, the value should be an array of strings.

Flag change object:

The following values can be specified. At least the status and one of type_id, id, or name must be specified. If a
type_id or name matches a single currently set flag, the flag will be updated unless new is specified.

name | type | description
name | string | The name of the flag that will be created or updated.
type_id| int The internal flag type ID that will be created or updated. You will need to specify the type_id if
more than one flag type of the same name exists.
sta- string | The flags new status (i.e. “?”, “+”, “-” or “X” to clear a flag).
tus
re- string | The login of the requestee if the flag type is requestable to a specific user.
ques-
tee
id int Use ID to specify the flag to be updated. You will need to specify the id if more than one flag is
set of the same name.
new boolean Set to true if you specifically want a new flag to be created.
Response
{
"bugs" : [
{
"alias" : null,
"changes" : {
"keywords" : {
"added" : "funny, stupid",
"removed" : ""
1},
"status" : {
"added" : "IN_PROGRESS",
"removed" : "CONFIRMED"
}
1
"id" : 35,
"last_change_time" : "2014-09-29T14:25:35Z2"
}
1
}

bugs (array) This points to an array of objects with the following items:

88

Chapter 5. WebService API Reference

BMO Documentation

name type description

id int The ID of the bug that was updated.

alias string The alias of the bug that was up-
dated, if this bug has any alias.

last_change_time datetime The exact time that this update was

done at, for this bug. If no update
was done (that is, no fields had their
values changed and no comment was
added) then this will instead be the
last time the bug was updated.

changes object The changes that were actually done

on this bug. The keys are the names
of the fields that were changed, and
the values are an object with two
keys:

* added (string) The values
that were added to this field,
possibly a comma-and-space-
separated list if multiple val-
ues were added.

* removed (string) The values
that were removed from this
field, possibly a comma-and-
space-separated list if multi-
ple values were removed.

Currently, some fields are not tracked in changes: comment, comment_is_private, and work_time. This means that
they will not show up in the return value even if they were successfully updated. This may change in a future version
of Bugzilla.

Errors

This method can throw all the same errors as Ger Bug, plus:

129 (Flag Status Invalid) The flag status is invalid.

130 (Flag Modification Denied) You tried to request, grant, or deny a flag but only a user with the required
permissions may make the change.

131 (Flag not Requestable from Specific Person) You can’t ask a specific person for the flag.

132 (Flag not Unique) The flag specified has been set multiple times. You must specify the id value to update
the flag.

133 (Flag Type not Unique) The flag type specified matches several flag types. You must specify the type id
value to update or add a flag.

134 (Inactive Flag Type) The flag type is inactive and cannot be used to create new flags.

140 (Markdown Disabled) You tried to set the “is_markdown” flag of the “comment” to true but Markdown
feature is not enabled.

601 (Invalid MIME Type) You specified a “content_type” argument that was blank, not a valid MIME type, or
not a MIME type that Bugzilla accepts for attachments.

603 (File Name Not Specified) You did not specify a valid for the “file_name” argument.

604 (Summary Required) You did not specify a value for the “summary” argument.

5.1. Core API v1 89

BMO Documentation

Possible Duplicates

Gets a list of possible duplicate bugs.
Request

To search by similar bug.

GET /rest/bug/possible_duplicates?id=1234567

To search by a similar bug summary directly.

GET /rest/bug/possible_duplicates?summary=Similar+Bug+Summary

name type| description

id int | The id of a bug to find duplicates of.

mary

sum-| string A summary to search for duplicates of, only used if no bug id is given.

uct

prod4 string A product group to limit the search in.

limit| int Limit the number of results returned. If the value is unset, zero or greater than the maximum value set
by the administrator, which is 10,000 by default, then the maximum value will be used instead. This
is a preventive measure against DoS-like attacks on Bugzilla.

Response
{
"bugs": [
{
"alias": null,
"history": [
{

"when": "2014-09-23T19:12:17Z",

"who": "user@bugzilla.org",
"changes": [
{
"added": "P1",
"field_name": "priority",
"removed": "P2"
3,
{
"removed": "blocker",
"field_name": "severity",
"added": "critical"
}
]
1,
{

"when": "2014-09-28T21:03:47Z",
"who": "user@bugzilla.org",
"changes": [

{

"added": "blocker?",

"removed": ,

(continues on next page)

90

Chapter 5. WebService API Reference

BMO Documentation

(continued from previous page)

"field_name": "flagtypes.name"
}
1
}
1,
"id": 35
}
1
3

bugs (array) Bug objects each containing the following items. If a bug id was used to query this endpoint, that bug
will not be in the list returned.

name | type | description

id int The numeric ID of the bug.

alias string | The unique alias of this bug. A null value will be returned if this bug has no alias.
history | array | An array of History objects.

History object:

name | type description

when | date- The date the bug activity/change happened.
time
who string | The login name of the user who performed the bug change.

changes| array An array of Change objects which contain all the changes that happened to the bug at this time
(as specified by when).

Change object:
name type| description
field_namg string The name of the bug field that has changed.
re- string The previous value of the bug field which has been deleted by the change.
moved
added string The new value of the bug field which has been added by the change.
attach- int | The ID of the attachment that was changed. This only appears if the change was to an attachment,
ment_id otherwise attachment_id will not be present in this object.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.4 Bug User Last Visited

Update Last Visited

Update the last-visited time for the specified bug and current user.
Request

To update the time for a single bug id:

5.1. Core API v1 91

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

POST /rest/bug_user_last_visit/(id)

To update one or more bug ids at once:

POST /rest/bug_user_last_visit

{
"ids" : [35,36,37]
3
name | type | description
id int An integer bug id.
ids array | One or more bug ids to update.
Response
[
{
"id" : 100,
"last_visit_ts" : "2014-10-16T17:38:24Z"
}
]
An array of objects containing the items:
name type description
id int The bug id.
last_visit_ts | datetime | The timestamp the user last visited the bug.

Errors

* 1300 (User Not Involved with Bug) The caller’s account is not involved with the bug id provided.

Get Last Visited

Request

Get the last-visited timestamp for one or more specified bug ids or get a list of the last 20 visited bugs and their

timestamps.

To return the last-visited timestamp for a single bug id:

GET /rest/bug_user_last_visit/(id)

To return more than one specific bug timestamps:

GET /rest/bug_user_last_visit/1237ids=234&ids=456

To return all the timestamps stored during the retention period:

GET /rest/bug_user_last_visit

92

Chapter 5. WebService API Reference

BMO Documentation

name | type | description
id int An integer bug id.
ids array | One or more optional bug ids to get.
Response
[
{
"id" : 100,
"last_visit_ts" : "2014-10-16T17:38:24Z"
}
1

An array of objects containing the following items:

name type description

id int The bug id.

last_visit_ts | datetime | The timestamp the user last visited the bug.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.5 Flag Activity

This API provides information about activity relating to bug and attachment flags.

Get Flag Activity

Request

There are a variety of methods for querying flag activity based on different criteria.

GET /rest/review/flag_activity/(flag_id)

Fetches activity for the given flag as specified by its id.

GET /rest/review/flag_activity/requestee/(requestee)

Fetches activity for flags where the requestee matches the given Bugzilla login.

GET /rest/review/flag_activity/setter/(requestee)

Fetches activity for flags where the setter matches the given Bugzilla login.

GET /rest/review/flag_activity/type_id/(type_id)

Fetches activity for all flags of the type specified by its id.

GET /rest/review/flag_activity/type_name/(type_name)

Fetches activity for all flags of the type specified by its name.

5.1. Core API v1

93

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

GET /rest/review/flag_activity

Fetches activity for all flags.

There are also query parameters that can be used to further filter the response:

name | type | description

limit int Number of entries to return.

offset | int Number of entries to skip before returning results.
after date | Display activity occurring on or after this date.
before | date | Display activity occurring before this date.

Note that if offset is specified, 1imit must be given as well.

There is a site-specific maximum number of entries that will be returned regardless of the value given for 1imit. This

is also the default if 1imit is not specified.

For example, to get the first 100 flag-activity entries that occurred on or after 2018-01-01 for flag ID 42:

GET /rest/review/flag_activity/4271imit=100&after=2018-01-01

Response

[
{
"attachment_id": null,
"bug_id": 1395127,
"creation_time": "2018-10-10 12:41:00",
"flag_id": 1637223,
"id": 1449303,
"requestee": {
"id": 123,
"name": "user@mozilla.com",
"nick": "user",
"real_name": "J. Random User"
1
"setter": {
"id": 123,
"name": "user@mozilla.com",
"nick": "user",
"real_name": "J. Random User"
1,
"status": "?",
"type": {

"description": "Set this flag when the bug is in need of additional information.",

"id": 800,

"is_active": true,
"is_multiplicable": true,
"is_requesteeble": true,
"name": "needinfo",
"type": "bug"

94 Chapter 5. WebService API Reference

BMO Documentation

An object containing a li

st of flags. The fields for each flag are as follows:

name type description

attachment_id | int The numeric ID of the associated attachment, if any.
bug_id int The numeric ID of the associated bug.
creation_time | datetime | The time the flag status changed.

flag_id int The numeric ID of this flag instance.

id int The numeric ID of this flag-activity event.
requestee object Data about the user of which the flag was requested.
setter object Data about the user who set the flag.

status string Status of the flag: “?”, “+”, or “-*.

type object Data about the type of flag.

The requestee and setter

objects have the following fields:

name type | description
id int The unique ID of the user.
name string | The login of the user (typically an email address).

real_name | string | The real name of the user, if set.

nick string

The user’s nickname. Currently this is extracted the real_name, name or email field.

The type object has the following fields:

name type description

description string A plain-English description of the flag type.

id int The numeric ID of the flag type.

is_active boolean | Indicates if the flag type can be used.

is_multiplicable | boolean | Indicates if more than one flags of this type can be set on a bug/attachment.

is_requesteeble

boolean | Indicates if this flag type supports a requestee.

name string Short descriptive name of this flag type.
type string The object to which this flag type can be applied (e.g. “bug”, “attachment”).
Errors

If a nonexistent but properly specified (i.e. integer value) flag or flag-type ID is given, a 200 OK response will be
returned with an empty array. In other cases, different response codes may be returned:

* 400 (Bad Request): An invalid flag or flag-type ID was given, or offset was given without a value for 1imit.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.6 Bugzilla Information

These methods are used to get general configuration information about this Bugzilla instance.

5.1. Core API v1

95

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Version

Returns the current version of Bugzilla. Normally in the format of X.X or X.X.X. For example, 4.4 for the initial
release of a new branch. Or 4.4.6 for a minor release on the same branch.

Request

GET /rest/version

Response
{
"version": "4.5.5+"
}
name | type | description
version | string | The current version of this Bugzilla
Extensions

Gets information about the extensions that are currently installed and enabled in this Bugzilla.

Request

GET /rest/extensions

Response
{
"extensions": {
"Voting": {
"version": "4.5.5+"
1
"BmpConvert": {
"version": "1.0"
3
}
}
name type description
extensions object An object containing the extensions
enabled as keys. Each extension ob-
ject contains the following keys:
* version (string) The version
of the extension.
96 Chapter 5. WebService APl Reference

BMO Documentation

Timezone

Returns the timezone in which Bugzilla expects to receive dates and times on the API. Currently hard-coded to UTC
(“4+400007). This is unlikely to change.

Request

GET /rest/timezone

{
"timezone": "+0000"
}
Response
name type | description
timezone | string | The timezone offset as a string in (+/-)XXXX (RFC 2822) format.
Time

Gets information about what time the Bugzilla server thinks it is, and what timezone it’s running in.

Request

GET /rest/time

Response

{
"web_time_utc": "2014-09-26T18:01:30Z",
"db_time": "2014-09-26T18:01:30Z",
"web_time": "2014-09-26T18:01:302",
"tz_offset": "+0000",

"tz_short_name": "UTC",
"tz_name": "UTC"

namé type| description

db_timetring The current time in UTC, according to the Bugzilla database server.

Note that Bugzilla assumes that the database and the webserver are running in the same time zone.
However, if the web server and the database server aren’t synchronized or some reason, this is the
time that you should rely on or doing searches and other input to the WebService.

web_timzing This is the current time in UTC, according to Bugzilla’s web server.

This might be different by a second from db_time since this comes from a different source. If it’s
any more different than a second, then there is likely some problem with this Bugzilla instance. In
this case you should rely on the db_time, not the web_time.

web_timizimgcIdentical to web_time. (Exists only for backwards-compatibility with versions of Bugzilla before
3.6,

tz_namstring The literal string UTC. (Exists only for backwards-compatibility with versions of Bugzilla before 3.6.)
tz_shorstrinmeélhe literal string UTC. (Exists only for backwards-compatibility with versions of Bugzilla before 3.6.)
tz_offisettring The literal string +0000. (Exists only for backwards-compatibility with versions of Bugzilla before
3.6.)

5.1. Core API v1 97

BMO Documentation

Parameters

Returns parameter values currently used in this Bugzilla.

Request

GET /rest/parameters

Response

Example response for anonymous user:

{
"parameters" : {
"maintainer" : "admin@example.com",
"requirelogin" : "Q"
}
}

Example response for authenticated user:

{
"parameters" : {

"allowemailchange" : "1",
"attachment_base" : "http://bugzilla.example.com/",
"commentonchange_resolution" : "0",
"commentonduplicate"” : "0",
"cookiepath" : "/",
"createemailregexp" : ".*"
"defaultopsys" : "",
"defaultplatform" : "",
"defaultpriority" : "--",
"defaultseverity" : "normal",
"default_bug_type" : "--",

"duplicate_or_move_bug_status" : "RESOLVED",

nn

"emailsuffix" : ,
"letsubmitterchoosemilestone" : "1",
"letsubmitterchoosepriority" : "1",
"mailfrom" : "bugzilla-daemon@example.com",
"maintainer" : "admin@example.com",
"maxattachmentsize" : "1000",
"maxlocalattachment”™ : "Q",
"musthavemilestoneonaccept” : "0",
"noresolveonopenblockers"™ : "0",
"password_complexity" : "no_constraints",
"rememberlogin" : "on"
"require_bug_type" : "1",

"requirelogin" : "0",

"urlbase" : "http://bugzilla.example.com/",
"use_regression_fields" : "1",
"use_see_also" : "1",

"useclassification" : "1",
"usemenuforusers" : "0",

"usegacontact" : "1",

"emailregexp” : "AL\\WAN.A\H\\-="T+@\\WANAN-THNL [\N\w\\-T+8",

(continues on next page)

98 Chapter 5. WebService APl Reference

BMO Documentation

(continued from previous page)

"usestatuswhiteboard"
"usetargetmilestone"

nyn,
e,

A logged-out user can only access the maintainer and requirelogin parameters.

A logged-in user can access the following parameters (listed alphabetically):

allowemailchange
attachment_base
commentonchange_resolution
commentonduplicate
cookiepath

defaultopsys

defaultplatform
defaultpriority
defaultseverity
default_bug_type
duplicate_or_move_bug_status
emailregexpdesc

emailsuffix
letsubmitterchoosemilestone
letsubmitterchoosepriority
mailfrom

maintainer
maxattachmentsize
maxlocalattachment
musthavemilestoneonaccept
noresolveonopenblockers
password_complexity
rememberlogin
require_bug_type
requirelogin
search_allow_no_criteria
urlbase
use_regression_fields
use_see_also

useclassification

5.1. Core API v1

99

BMO Documentation

¢ usemenuforusers

* useqacontact

¢ usestatuswhiteboard
* usetargetmilestone

A user in the tweakparams group can access all existing parameters. New parameters can appear or obsolete parameters
can disappear depending on the version of Bugzilla and on extensions being installed. The list of parameters returned
by this method is not stable and will never be stable.

Last Audit Time

Gets the most recent timestamp among all of the events recorded in the audit_log table.
Request

To get most recent audit timestamp for all classes:

GET /rest/last_audit_time

To get the the most recent audit timestamp for the Bugzilla: :Product class:

GET /rest/last_audit_time?class=Bugzilla::Product

name | type | description
class | ar- The class names are defined as Bugzilla: :<class_name>" such as Bugzilla:Product™ for prod-
ray ucts.
Response
{

"last_audit_time": "2014-09-23T18:03:38Z"
}

name type | description
last_audit_time | string | The maximum of the at_time from the audit_log.

Job Queue Status

Reports the status of the job queue.

Request

GET /rest/jobqueue_status

This method requires an authenticated user.

Response

{

"total": 12,
"errors": O

100 Chapter 5. WebService API Reference

BMO Documentation

name | type description
total integer | The total number of jobs in the job queue.
errors | integer | The number of errors produced by jobs in the queue.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.7 Classifications

This part of the Bugzilla API allows you to deal with the available classifications. You will be able to get information
about them as well as manipulate them.

Get Classification

Returns an object containing information about a set of classifications.
Request

To return information on a single classification using the ID or name:

GET /rest/classification/(id_or_name)

name type description
id_or_name | mixed | An Integer classification ID or name.

Response
{
"classifications": [
{
"sort_key": O,
"description": "Unassigned to any classifications"”,
"products": [
{
"id": 2,
"name": "FoodReplicator",
"description": "Software that controls a piece of hardware that will create.
—any food item through a voice interface."
1,
{
"description": "Silk, etc.",
"name": "Spider Secretions",
"id": 4
}
1,
"id": 1,
"name": "Unclassified"
}

5.1. Core API v1 101

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

classifications (array) Each object is a classification that the user is authorized to see and has the following items:

name type | description

id int The ID of the classification.

name string | The name of the classification.

descrip- string | The description of the classification.

tion

sort_key int The value which determines the order the classification is sorted.

products | ar- Products the user is authorized to access within the classification. The product object keys are
ray described below.

Product object:

name type | description

name string | The name of the product.

id int The ID of the product.
description | string | The description of the product.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.8 Comments

Get Comments

This allows you to get data about comments, given a bug ID or comment ID.
Request

To get all comments for a particular bug using the bug ID or alias:

GET /rest/bug/(id_or_alias)/comment

To get a specific comment based on the comment ID:

GET /rest/bug/comment/(comment_id)

name| type| description

id_or_|alirixed A single integer bug ID or alias.
com- | int | A single integer comment ID.
ment_jid
new_sindate-| If specified, the method will only return comments newer than this time. This only affects comments
time | returned from the ids argument. You will always be returned all comments you request in the
comment_ids argument, even if they are older than this date.

Response
{
"bugs": {
35, g

"comments": [

(continues on next page)

102 Chapter 5. WebService API Reference

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

(continued from previous page)

{
"time": "2000-07-25T13:50:04Z",
"text": "test bug to fix problem in removing from cc list.",
"bug_id": 35,
"count": O,
"attachment_id": null,
"is_private": false,
“tags": [1,
"creator": "user@bugzilla.org",
"creation_time": "2000-07-25T13:50:04Z",
"id": 75
}

]
}
}l

"comments": {}

Two items are returned:

bugs This is used for bugs specified in ids. This is an object, where the keys are the numeric IDs of the bugs, and the
value is a object with a single key, comments, which is an array of comments. (The format of comments is described
below.)

Any individual bug will only be returned once, so if you specify an ID multiple times in ids, it will still only be returned
once.

comments Each individual comment requested in comment_ids is returned here, in a object where the numeric com-
ment ID is the key, and the value is the comment. (The format of comments is described below.)

A “comment” as described above is a object that contains the following items:

name| type| description

id int | The globally unique ID for the comment.

bug_id int | The ID of the bug that this comment is on.

at- int If the comment was made on an attachment, this will be the ID of that attachment. Otherwise it will

tach- be null.

ment_id

count | int | The number of the comment local to the bug. The Description is 0, comments start with 1.

text string The body of the comment, including any special text (such as “this bug was marked as a duplicate
of...”).

raw_textstring The body of the comment without any special additional text.

cre- string The login name of the comment’s author.

ator

time | date-| The time (in Bugzilla’s timezone) that the comment was added.

time

cre- date-| This is exactly same as the time key. Use this field instead of time for consistency with other

ation_tirtiene | methods including Ger Bug and Get Attachment.
For compatibility, time is still usable. However, please note that time may be deprecated and
removed in a future release.

is_privafeoolgartrue if this comment is private (only visible to a certain group called the “insidergroup”), false
otherwise.

is_markdowlgatrue if this comment is markdown. false if this comment is plaintext.

5.1. Core API v1 103

BMO Documentation

Errors
This method can throw all the same errors as Get Bug. In addition, it can also throw the following errors:

* 110 (Comment Is Private) You specified the id of a private comment in the “comment_ids” argument, and you
are not in the “insider group” that can see private comments.

* 111 (Invalid Comment ID) You specified an id in the “comment_ids” argument that is invalid—either you specified
something that wasn’t a number, or there is no comment with that id.

Create Comments

This allows you to add a comment to a bug in Bugzilla. All comments created via the API will be considered Markdown
(specifically GitHub Flavored Markdown).

Request

To create a comment on a current bug.

POST /rest/bug/(id)/comment

{
"ids" : [123,..],
"comment" : "This is an additional comment",
"is_private" : false,
"is_markdown" : true

ids is optional in the data example above and can be used to specify adding a comment to more than one bug at the
same time.

name type | description

id int The ID or alias of the bug to append a comment to.

ids array | List of integer bug IDs to add the comment to.

com- string | The comment to append to the bug. If this is empty or all whitespace, an error will be thrown
ment saying that you did not set the comment parameter.

is_private| booleanIf set to true, the comment is private, otherwise it is assumed to be public.
is_markdowmoolean If true, the comment will be rendered as markdown. (default: false)
work_timg dou- | Adds this many hours to the “Hours Worked” on the bug. If you are not in the time tracking

ble group, this value will be ignored.
Response
{
"id" : 789
}
name | type | description
id int ID of the newly-created comment.
Errors

* 54 (Hours Worked Too Large) You specified a “work_time” larger than the maximum allowed value of
“99999.99”.

104 Chapter 5. WebService API Reference

BMO Documentation

* 100 (Invalid Bug Alias) If you specified an alias and there is no bug with that alias.

* 101 (Invalid Bug ID) The id you specified doesn’t exist in the database.

* 109 (Bug Edit Denied) You did not have the necessary rights to edit the bug.

e 113 (Can’t Make Private Comments) You tried to add a private comment, but don’t have the necessary rights.

¢ 114 (Comment Too Long) You tried to add a comment longer than the maximum allowed length (65,535 char-
acters).

* 140 (Markdown Disabled) You tried to set the “is_markdown” flag to true but the Markdown feature is not
enabled.

Search Comment Tags

Searches for tags which contain the provided substring.
Request

To search for comment tags:

GET /rest/bug/comment/tags/(query)

Example:

GET /rest/bug/comment/tags/spa

name | type | description
query | string | Only tags containing this substring will be returned.

limit int If provided will return no more than 1imit tags. Defaults to 10.
Response
[
"spam"
]

An array of matching tags.
Errors
This method can throw all of the errors that Ger Bug throws, plus:

¢ 125 (Comment Tagging Disabled) Comment tagging support is not available or enabled.

Update Comment Tags

Adds or removes tags from a comment.
Request

To update the tags comments attached to a comment:

PUT /rest/bug/comment/(comment_id)/tags

Example:

5.1. Core API v1 105

BMO Documentation

{
"comment_id" : 75,
uaddn . ["Spam", ubadu]
}
name type | description
comment_id | int The ID of the comment to update.
add array | The tags to attach to the comment.
remove array | The tags to detach from the comment.
Response
L
"bad",
"spam"
]

An array of strings containing the comment’s updated tags.

Errors

This method can throw all of the errors that Get Bug throws, plus:
* 125 (Comment Tagging Disabled) Comment tagging support is not available or enabled.
¢ 126 (Invalid Comment Tag) The comment tag provided was not valid (e.g. contains invalid characters).
e 127 (Comment Tag Too Short) The comment tag provided is shorter than the minimum length.

¢ 128 (Comment Tag Too Long) The comment tag provided is longer than the maximum length.

Render Comment

Returns the HTML rendering of the provided comment text.

Request

POST /rest/bug/comment/render

Example:
{
"id" : 2345,
"text" : "This issue has been fixed in bug 1234."
}
name | type | description
text string | Comment text to render.
id int The ID of the bug to render the comment against.
Response

106 Chapter 5. WebService API Reference

BMO Documentation

{
"html" : "This issue has been fixed in <a class=\"bz_bug_link
bz_status_RESOLVED bz_closed\" title=\"RESOLVED FIXED - some issue that was.
—fixed\" href=\"show_bug.cgi?id=1234\">bug 1234."
]

name | type | description
html string | Text containing the HTML rendering.

Errors

This method can throw all of the errors that Ger Bug throws.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.9 Bug Fields

The Bugzilla API for getting details about bug fields.

Fields

Get information about valid bug fields, including the lists of legal values for each field.
Request

To get information about all fields:

GET /rest/field/bug

To get information related to a single field:

GET /rest/field/bug/(id_or_name)

name type description
id_or_name | mixed | An integer field ID or string representing the field name.

Response
{
"fields": [
{
"display_name": "Priority",
"name": "priority",
"type": 2,

"is_mandatory": false,
"value_field": null,
"values": [
{
"sortkey": 100,
"sort_key": 100,

(continues on next page)

5.1. Core API v1 107

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

(continued from previous page)

"visibility_values":
Ilnamell: llPlll

"sort_key": 200,
"name": "P2",
"visibility_values":
"sortkey": 200

"sort_key": 300,
"visibility_values":
Ilnamell: IIP3|I,
"sortkey": 300

"sort_key": 400,
Ilnamell: IIP4|I,
"visibility_values":
"sortkey": 400

"name": "P5",
"visibility_values":
"sort_key": 500,
"sortkey": 500
}

1,

"visibility_values": [],

"visibility_field": null,

"is_on_bug_entry": false,

"is_custom": false,

"id": 13

1,

1,

1,

1,

1,

field (array) Field objects each containing the following items:

108

Chapter 5. WebService APl Reference

BMO Documentation

name

description

id

type
int

An integer ID uniquely identifying
this field in this installation only.

type

int

The number of the fieldtype. The
following values are defined:

* 0 Field type unknown

* 1 Single-line string field

* 2 Single value field

* 3 Multiple value field

* 4 Multi-line text value

* 5 Date field with time

* 6 Bug ID field

* 7 See Also field

* 8 Keywords field

* 9 Date field

* 10 Integer field

is_custom

boolean

true when this is a custom field,
false otherwise.

name

string

The internal name of this field. This
is a unique identifier for this field.
If this is not a custom field, then
this name will be the same across all
Bugzilla installations.

display_name

string

The name of the field, as it is shown
in the user interface.

is_mandatory

boolean

true if the field must have a value
when filing new bugs. Also, manda-
tory fields cannot have their value
cleared when updating bugs.

is_on_bug_entry

boolean

For custom fields, this is true if the
field is shown when you enter a new
bug. For standard fields, this is cur-
rently always false, even if the field
shows up when entering a bug. (To
know whether or not a standard field
is valid on bug entry, see Create Bug.

visibility_field

string

The name of a field that controls the
visibility of this field in the user in-
terface. This field only appears in
the user interface when the named
field is equal to one of the values is
visibility_values. Can be null.

visibility_values

array

This field is only shown when
visibility_field matches one
of these string values. When
visibility_field is null, then
this is an empty array.

value_field

string

The name of the field that controls
whether or not particular values of
the field are shown in the user inter-
face. Can be null.

values

array

Objects representing the legal val-

ues for select-type (drop-down and
Htinle-celeetion)—Helds Thic

5.1. Core API v1

multiple-seleetion)—fields—This—is
also populated for the componenk09
version, target_milestone,
and keywords fields, but not for
the product field (you must use

BMO Documentation

Value object:

name type description

name string The actual value—this is what you
would specify for this field in
create, etc.

sort_key int Values, when displayed in a list, are

sorted first by this integer and then
secondly by their name.
visibility_values array If value_field is defined for this
field, then this value is only shown
if the value_field is set to one
of the values listed in this array.
Note that for per-product fields,
value_field is set to product
and visibility_values will re-
flect which product(s) this value ap-
pears in.
is_active boolean This value is defined only for cer-
tain product-specific fields such as
version, target_milestone or compo-
nent. When true, the value is active;
otherwise the value is not active.
description string The description of the value.
This item is only included for the
keywords field.
is_open boolean For bug_status values, determines
whether this status specifies that the
bug is “open” (true) or “closed”
(false). This item is only included
for the bug_status field.
can_change_to array For bug_status values, this is
an array of objects that determine
which statuses you can transition to
from this status. (This item is only
included for the bug_status field.)
Each object contains the following
items:
* name: (string) The name of
the new status
* comment_required:

(boolean) true if a com-

ment is required when you

change a bug into this status

using this transition.

Errors

* 51 (Invalid Field Name or Id) You specified an invalid field name or id.

110 Chapter 5. WebService API Reference

BMO Documentation

Legal Values

DEPRECATED Use “’Fields” instead.
Tells you what values are allowed for a particular field.
Request

To get information on the values for a field based on field name:

GET /rest/field/bug/(field)/values

To get information based on field name and a specific product:

GET /rest/field/bug/(field)/(product_id)/values

name type | description
field string| The name of the field you want information about. This should be the same as the name you
would use in Create Bug, below.
prod- int If you’re picking a product-specific field, you have to specify the ID of the product you want the
uct_id values for.
Response
{
"values": [
"p1",
"p2",
"P3",
"P4",
npn
]
}

name | type | description
values | array | The legal values for this field. The values will be sorted as they normally would be in Bugzilla.

Errors

* 106 (Invalid Product) You were required to specify a product, and either you didn’t, or you specified an invalid
product (or a product that you can’t access).

* 108 (Invalid Field Name) You specified a field that doesn’t exist or isn’t a drop-down field.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1. Core API v1 111

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

5.1.10 Groups

The API for creating, changing, and getting information about groups.

Create Group

This allows you to create a new group in Bugzilla. You must be authenticated and be in the creategroups group to
perform this action.

Request

POST /rest/group

{
"name" : "secret-group",
"description" : "Too secret for you!",
"is_active" : true

}

Some params must be set, or an error will be thrown. The required params are marked in bold.

name | type | description

name string | A short name for this group. Must be unique. This is not usually displayed in the user interface,
except in a few places.

de- string | A human-readable name for this group. Should be relatively short. This is what will normally

scrip- appear in the UI as the name of the group.

tion

user_regexgiring | A regular expression. Any user whose Bugzilla username matches this regular expression will
automatically be granted membership in this group.

is_active| booledntrue if new group can be used for bugs, false if this is a group that will only contain users and
no bugs will be restricted to it.

icon_url | string| A URL pointing to a small icon used to identify the group. This icon will show up next to users’
names in various parts of Bugzilla if they are in this group.

Response
{
"id": 22
}
name | type | description
id int ID of the newly-created group.
Errors

* 800 (Empty Group Name) You must specify a value for the “name” field.
* 801 (Group Exists) There is already another group with the same “name”.
* 802 (Group Missing Description) You must specify a value for the “description” field.

* 803 (Group Regexp Invalid) You specified an invalid regular expression in the “user_regexp” field.

112 Chapter 5. WebService API Reference

BMO Documentation

Update Group

This allows you to update a group in Bugzilla. You must be authenticated and be in the creategroups group to perform
this action.

Request

To update a group using the group ID or name:

PUT /rest/group/(id_or_name)

{
"name" : "secret-group",
"description" : "Too secret for you! (updated description)",
"is_active" : false

}

You can edit a single group by passing the ID or name of the group in the URL. To edit more than one group, you can
specify addition IDs or group names using the ids or names parameters respectively.

One of the below must be specified.

name type description

id_or_name | mixed | Integer group or name.

ids array | IDs of groups to update.
names array | Names of groups to update.

The following parameters specify the new values you want to set for the group(s) you are updating.

name | type | description

name string| A new name for the groups. If you try to set this while updating more than one group, an error
will occur, as group names must be unique.

de- string| A new description for the groups. This is what will appear in the Ul as the name of the groups.

scrip-

tion

user_regexgpring| A new regular expression for email. Will automatically grant membership to these groups to
anyone with an email address that matches this Perl regular expression.

is_active booleanSet if groups are active and eligible to be used for bugs. true if bugs can be restricted to this
group, false otherwise.

icon_url| string| A URL pointing to an icon that will appear next to the name of users who are in this group.

Response

{
"groups": [
{
"changes": {
"description": {

"added": "Too secret for you! (updated description)",
"removed": "Too secret for you!"

1,

"is_active": {
"removed": "1",

(continues on next page)

5.1. Core API v1 113

BMO Documentation

(continued from previous page)

"added": "0"
}
e
"id": "22"
}
]
}

groups (array) Group change objects, each containing the following items:

name type description

id int The ID of the group that was up-
dated.

changes object The changes that were actually done

on this group. The keys are
the names of the fields that were
changed, and the values are an ob-
ject with two items:

* added: (string) The values
that were added to this field,
possibly a comma-and-space-
separated list if multiple val-
ues were added.

* removed: (string) The values
that were removed from this
field, possibly a comma-and-
space-separated list if multi-
ple values were removed.

Errors

The same as Create Group.

Get Group

Returns information about Bugzilla groups.
Request

To return information about a specific group ID or name:

GET /rest/group/(id_or_name)

You can also return information about more than one specific group by using the following in your query string:

GET /rest/group?ids=1&ids=2&ids=3
GET /group?names=ProductOne&names=Product?2

If neither IDs nor names are passed, and you are in the creategroups or editusers group, then all groups will be retrieved.
Otherwise, only groups that you have bless privileges for will be returned.

114 Chapter 5. WebService API Reference

BMO Documentation

name type description

id_or_name | mixed Integer group ID or name.

ids array Integer IDs of groups.

names array Names of groups.

membership | boolean | Setto 1 then a list of members of the passed groups names and IDs will be returned.

Response
{
"groups": [
{
"membership": [
{
"real_name": "Bugzilla User",
"nick": "user",
"can_login": true,
"name": "user@bugzilla.org",
"login_denied_text": "",
"id": 85,
"email_enabled": false,
"email": "user@bugzilla.org"
1,

1,

"is_active": true,

"description": "Test Group",

"user_regexp": "",

"is_bug_group": true,

"name": "TestGroup",

"id": 9

}

If the user is a member of the creategroups group they will receive information about all groups or groups matching the
criteria that they passed. You have to be in the creategroups group unless you're requesting membership information.

If the user is not a member of the creategroups group, but they are in the “editusers” group or have bless privileges
to the groups they require membership information for, the is_active, is_bug_group and user_regexp values are not
supplied.

The return value will be an object containing group names as the keys; each value will be an object that describes the
group and has the following items:

5.1. Core API v1 115

BMO Documentation

name type| description

id int | The unique integer ID that Bugzilla uses to identify this group. Even if the name of the group
changes, this ID will stay the same.

name string The name of the group.

de- string The description of the group.

scrip-

tion

is_bug_gromp | Whether this group is to be used for bug reports or is only administrative specific.

user_regexptring

A regular expression that allows users to be added to this group if their login matches.

is_active| int

Whether this group is currently active or not.

users ar-
ray

User objects that are members of this group; only returned if the user sets the membership pa-
rameter to 1. Each user object has the items describe in the User object below.

User object:

name type | description

id int The ID of the user.

real_name| string| The actual name of the user.

nick string | The user’s nickname. Currently this is extracted from the real_name, name or email field.
email string| The email address of the user.

name string | The login name of the user. Note that in some situations this is different than their email.

can_login| boolednA boolean value to indicate if the user can login into Bugzilla.

email_enaplbdolednA boolean value to indicate if bug-related mail will be sent to the user or not.

dis- string | A text field that holds the reason for disabling a user from logging into Bugzilla. If empty, then
abled_text the user account is enabled; otherwise it is disabled/closed.
Errors

* 51 (Invalid O

bject) A non existing group name was passed to the function, as a result no group object existed for

that invalid name.

¢ 805 (Cannot

view groups) Logged-in users are not authorized to edit Bugzilla groups as they are not members

of the creategroups group in Bugzilla, or they are not authorized to access group member’s information as they
are not members of the “editusers” group or can bless the group.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.11 Products

This part of the Bugzilla API allows you to list the available products and get information about them.

List Products

Returns a list of the

Request

IDs of the products the user can search on.

To get a list of product IDs a user can select such as for querying bugs:

GET /rest/product_selectable

116

Chapter 5. WebService API Reference

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

To get a list of product IDs a user can enter a bug against:

GET /rest/product_enterable

To get a list of product IDs a user can search or enter bugs against.

GET /rest/product_accessible

Response

{
"ids": [
oyt
n3n
"19",
"y,
ngn

name | type

description

ids array

List of integer product IDs.

Get Product

Returns a list of information about the products passed to it.

Request

To return information about a specific type of products such as accessible, selectable, or enterable:

GET /rest/product?type=accessible

To return information about a specific product by id or name:

GET /rest/product/(id_or_name)

You can also return information about more than one product by using the following parameters in your query string:

GET /rest/product?ids=1&ids=2&ids=3

GET /rest/product?names=ProductOne&names=Product2

name | type| description

id_or_namixed Integer product ID or product name.

ids ar- Product IDs

names | ar- | Product names
ray

type | string The group of products to return.

with duplicates removed.

Valid values are accessible (default), selectable, and
enterable. type can be a single value or an array of values if more than one group is needed

Response

5.1. Core API v1

117

BMO Documentation

{
"products": [
{
"id": 1,
"default_bug_type": "defect",
"default_milestone": "---",
"components": [
{
"is_active": true,
"default_assigned_to": "admin@bugzilla.org",
"default_bug_type": "defect",
"id": 1,
"sort_key": 0,
"name": "TestComponent",
"flag_types": {
"bug": [
{
"is_active": true,
"grant_group": null,
"cc_list": "M,
"is_requestable": true,
"id": 3,
"is_multiplicable": true,
"name": "needinfo",
"request_group": null,
"is_requesteeble": true,
"sort_key": 0,
"description": "needinfo"
}
1,
"attachment": [
{
"description": "Review",
"is_multiplicable": true,
"name": "review",
"is_requesteeble": true,
"request_group": null,
"sort_key": 0,
"cc_list": "M,
"grant_group": null,
"is_requestable": true,
"id": 2,
"is_active": true
}
]
1,
"default_ga_contact": "",
"triage_owner": "",
"description": "This is a test component."
}
1,
"is_active": true,
"classification": "Unclassified",

(continues on next page)

118 Chapter 5. WebService APl Reference

BMO Documentation

(continued from previous page)

"versions": [

{
"id": 1,
"name": "unspecified",
"is_active": true,
"sort_key": O
}
1,
"description": "This is a test product.",

"has_unconfirmed": true,
"milestones": [

{
"name": "---",
"is_active": true,
"sort_key": O,
"id": 1
}
1,
"name": "TestProduct"

products (array) Each product object has the following items:

name type description

id int An integer ID uniquely identifying the product in this installation only.
name string | The name of the product. This is a unique identifier for the product.
description string | A description of the product, which may contain HTML.

is_active boolean| A boolean indicating if the product is active.

de- string | The default type for bugs filed under this product.

fault_bug_type

de- string | The name of the default milestone for the product.

fault_milestone
has_unconfirmed boolean| Indicates whether the UNCONFIRMED bug status is available for this product.

classification string | The classification name for the product.

components array Each component object has the items described in the Component object below.

versions array Each object describes a version, and has the following items: name, sort_key and
is_active.

milestones array Each object describes a milestone, and has the following items: name, sort_key and
is_active.

If the user tries to access a product that is not in the list of accessible products for the user, or a product that does not
exist, that is silently ignored, and no information about that product is returned.

Component object:

5.1. Core API v1 119

BMO Documentation

fault_assigned_to

name type | description

id int | An integer ID uniquely identifying the component in this installation only.
name string The name of the component. This is a unique identifier for this component.
descrip- string A description of the component, which may contain HTML.

tion

de- string The login name of the user to whom new bugs will be assigned by default.

de-

fault_bug_type

string

The default type for bugs filed under this component.

de-

fault_qa_cantact

string

The login name of the user who will be set as the QA Contact for new bugs by default. Empty
string if the QA contact is not defined.

triage_ownerstring The login name of the user who is named as the Triage Owner of the component. Empty string
if the Triage Owner is not defined.

sort_key int Components, when displayed in a list, are sorted first by this integer and then secondly by their
name.

is_active | booleamA boolean indicating if the component is active. Inactive components are not enabled for new
bugs.

flag_types | ob- | An object containing two items bug and attachment that each contains an array of objects,

ject | where each describes a flagtype. The flagtype items are described in the Flagtype object below.
Flagtype object:

name type | description

id int Returns the ID of the flagtype.

name string | Returns the name of the flagtype.

descrip- string | Returns the description of the flagtype.

tion

cc_list string | Returns the concatenated CC list for the flagtype, as a single string.

sort_key int Returns the sortkey of the flagtype.

is_active | boolegnReturns whether the flagtype is active or disabled. Flags being in a disabled flagtype are not
deleted. It only prevents you from adding new flags to it.

is_requestaplboolegnReturns whether you can request for the given flagtype (i.e. whether the ‘?’ flag is available or
not).

is_requestegloolegnReturns whether you can ask someone specifically or not.

is_multiplicabtmlegnReturns whether you can have more than one flag for the given flagtype in a given
bug/attachment.

grant_group int the group ID that is allowed to grant/deny flags of this type. If the item is not included all users
are allowed to grant/deny this flagtype.

re- int The group ID that is allowed to request the flag if the flag is of the type requestable. If the item

quest_group is not included all users are allowed request this flagtype.

To return information about components in products, you can use the . property accesssor in your request:

/rest/product?type=enterable&include_fields=id,name, components.name,components.id,
—,components.is_active,components.description

120

Chapter 5. WebService API Reference

BMO Documentation

Create Product

This allows you to create a new product in Bugzilla.

Request

POST /rest/product

"name" :

"description" :
"classification" :
: false,
"has_unconfirmed"

"is_open"

"version"

}

"AnotherProduct"”,
"Another Product",
"Unclassified",

: false,
: "unspecified"

Some params must be set, or an error will be thrown. The required params are marked in bold.

name type description

name string The name of this product. Must be globally unique within Bugzilla.

description string A description for this product. Allows some simple HTML.

version string The default version for this product.

has_unconfirmed | boolean | Allow the UNCONFIRMED status to be set on bugs in this product. Default: true.
classification string The name of the Classification which contains this product.

de- string The default type for bugs filed under this product. Each component can override this
fault_bug_type value.

de- string The default milestone for this product. Default ‘—°.

fault_milestone

is_open boolean | true if the product is currently allowing bugs to be entered into it. Default: true.
create_series boolean | true if you want series for New Charts to be created for this new product. Default:

true.

Response
{

"id": 20
}

Returns an object with the following items:

Errors

name | type
id int

description
ID of the newly-filed product.

* 51 (Classification does not exist) You must specify an existing classification name.

* 700 (Product blank name) You must specify a non-blank name for this product.

¢ 701 (Product name too long) The name specified for this product was longer than the maximum allowed length.

702 (Product name already exists) You specified the name of a product that already exists. (Product names must

be globally unique in Bugzilla.)

703 (Product must have description) You must specify a description for this product.

5.1. Core API v1

121

BMO Documentation

* 704 (Product must have version) You must specify a version for this product.

Update Product

This allows you to update a product in Bugzilla.

Request

PUT /rest/product/(id_or_name)

You can edit a single product by passing the ID or name of the product in the URL. To edit more than one product, you
can specify addition IDs or product names using the ids or names parameters respectively.

{
"ids" @ [123],
"name" : "BarName",
"has_unconfirmed" : false
}

One of the below must be specified.

name type | description

id_or_name | mixed | Integer product ID or name.

ids array | Numeric IDs of the products that you wish to update.
names array | Names of the products that you wish to update.

The following parameters specify the new values you want to set for the product(s) you are updating.

name type | description
name string | A new name for this product. If you try to set this while updating more than one product, an
error will occur, as product names must be unique.
de- string | The default type for bugs filed under this product. Each component can override this value.
fault_bug_type
de- string| When a new bug is filed, what milestone does it get by default if the user does not choose
fault_milestone one? Must represent a milestone that is valid for this product.
descrip- string | Update the long description for these products to this value.
tion
has_unconfirnbedlean Allow the UNCONFIRMED status to be set on bugs in products.
is_open booleantrue if the product is currently allowing bugs to be entered into it, false otherwise.
Response
{
"products" : [
{
"id" @ 123,
"changes" : {
"name" : {
"removed" : "FooName",
"added" : "BarName"
3,
"has_unconfirmed" : {

(continues on next page)

122 Chapter 5. WebService API Reference

BMO Documentation

(continued from previous page)

"removed" : "1",
"added” : "O"

}

products (array) Product change objects containing the following items:

name type description

id int The ID of the product that was up-
dated.

changes object The changes that were actually done

on this product. The keys are
the names of the fields that were
changed, and the values are an ob-
ject with two items:
* added: (string) The value that
this field was changed to.
* removed: (string) The value
that was previously set in this
field.

Booleans will be represented with the strings ‘1’ and ‘0’ for changed values as they are stored as strings in the database
currently.

Errors
* 700 (Product blank name) You must specify a non-blank name for this product.

¢ 701 (Product name too long) The name specified for this product was longer than the maximum allowed length.

702 (Product name already exists) You specified the name of a product that already exists. (Product names must
be globally unique in Bugzilla.)

703 (Product must have description) You must specify a description for this product.

¢ 705 (Product must define a default milestone) You must define a default milestone.

This documentation undoubtedly has bugs; if you find some, please file them here.

5.1.12 Users

This part of the Bugzilla API allows you to create user accounts, get information about user accounts and to log in or
out using an existing account.

5.1. Core API v1 123

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

BMO Documentation

Login

Logging in with a username and password is required for many Bugzilla installations, in order to search for private
bugs, post new bugs, etc. This method allows you to retrieve a token that can be used as authentication for subsequent
API calls. Otherwise you will need to pass your login and password with each call.

This method will be going away in the future in favor of using API keys.

Request

GET /rest/login?login=foo@example.com&password=toosecrettoshow

name type | description
login string | The user’s login name.
password | string | The user’s password.

Response

{
"token": "786-OLaWfBisMY",

"id": 786

name type| description

id int | Numeric ID of the user that was logged in.

to- | string Token which can be passed in the parameters as authentication in other calls. The token can be sent
ken along with any future requests to the webservice, for the duration of the session, i.e. til Logout is
called.

Errors
* 300 (Invalid Username or Password) The username does not exist, or the password is wrong.

* 301 (Login Disabled) The ability to login with this account has been disabled. A reason may be specified with
the error.

* 305 (New Password Required) The current password is correct, but the user is asked to change their password.

* 50 (Param Required) A login or password parameter was not provided.

Logout

Log out the user. Basically it invalidates the token provided so it cannot be re-used. Does nothing if the token is not in
use. Will also clear any existing authentication cookies the client may still have stored.

Request

GET /rest/logout?token=1234-VWv051X69r

name | type | description
token | string | The user’s token used for authentication.

124 Chapter 5. WebService API Reference

BMO Documentation

Valid Login

This method will verify whether a client’s cookies or current login token is still valid or have expired. A valid username
that matches must be provided as well.

Request

GET /rest/valid_login?login=foo@example.com&token=1234-VWv051X69r

name | type | description
login | string | The login name that matches the provided cookies or token.
token | string | Persistent login token currently being used for authentication.

Response

Returns true/false depending on if the current token is valid for the provided username.

Create User

Creates a user account directly in Bugzilla, password and all. Instead of this, you should use Offer Account by Email
when possible because that makes sure that the email address specified can actually receive an email. This function
does not check that. You must be authenticated and be in the editusers group to perform this action.

Request

POST /rest/user

{
"email" : "user@bugzilla.org",
"full_name" : "Test User",
"password" : "K161dRr92211"

}

name type| description

email string The email address for the new user.

full_nastring The user’s full name. Will be set to empty if not specified.

pass-| string The password for the new user account, in plain text. It will be stripped of leading and trailing whites-
word pace. If blank or not specified, the new created account will exist in Bugzilla but will not be allowed
to log in using DB authentication until a password is set either by the user (through resetting their
password) or by the administrator.

Response
{
"id": 58707
}
name | type | description
id int The numeric ID of the user that was created.
Errors

5.1. Core API v1 125

BMO Documentation

* 502 (Password Too Short) The password specified is too short. (Usually, this means the password is under three
characters.)

Update User

Updates an existing user account in Bugzilla. You must be authenticated and be in the editusers group to perform this
action.

Request

PUT /rest/user/(id_or_name)

You can edit a single user by passing the ID or login name of the user in the URL. To edit more than one user, you can
specify addition IDs or login names using the ids or names parameters respectively.

name \ type| description
id_or_nameixe{l Either the ID or the login name of the user to update.

ids ar- | Additional IDs of users to update.
ray
names | ar- | Additional login names of users to update.
ray
full_namestring The new name of the user.
email string The email of the user. Note that email used to login to Bugzilla. Also note that you can only update

one user at a time when changing the login name / email. (An error will be thrown if you try to
update this field for multiple users at once.)

pass- string The password of the user.

word

email_enablkdeari boolean value to enable/disable sending bug-related mail to the user.

lo- string A text field that holds the reason for disabling a user from logging into Bugzilla. If empty, then

gin_denied_text the user account is enabled; otherwise it is disabled/closed.

groups | ob- | These specify the groups that this user is directly a member of. To set these, you should pass an
ject | object as the value. The object’s items are described in the Groups update objects below.
bless_groupis- | This is the same as groups but affects what groups a user has direct membership to bless that group.
ject | It takes the same inputs as groups.

Groups and bless groups update object:

name type| description
add | ar- | The group IDs or group names that the user should be added to.

ray
re- | ar- | The group IDs or group names that the user should be removed from.

move ray

set | ar- | Integers or strings which are an exact set of group IDs and group names that the user should be a

ray | member of. This does not remove groups from the user when the person making the change does not
have the bless privilege for the group.

If you specify set, then add and remove will be ignored. A group in both the add and remove list will be added.
Specifying a group that the user making the change does not have bless rights will generate an error.

Response

* users: (array) List of user change objects with the following items:

126 Chapter 5. WebService API Reference

BMO Documentation

name

description

id

type
int

The ID of the user that was updated.

changes

object

The changes that were actually done
on this user. The keys are the names
of the fields that were changed, and
the values are an object with two
items:

e added: (string) The values
that were added to this field,
possibly a comma-and-space-
separated list if multiple val-
ues were added.

* removed: (string) The values
that were removed from this
field, possibly a comma-and-
space-separated list if multi-
ple values were removed.

Errors

* 51 (Bad Login Name) You passed an invalid login name in the “names” array.

* 304 (Authorization Required) Logged-in users are not authorized to edit other users.

Get User

Gets information about user accounts in Bugzilla.

Request

To get information about a single user in Bugzilla:

GET /rest/user/(id_or_name)

To get multiple users by name or ID:

GET /rest/user?names=foo@bar.com&name=test@bugzilla.org

GET /rest/user?ids=123&ids=321

To get user matching a search string:

GET /rest/user?match=foo

To get user by using an integer ID value or by using match, you must be authenticated.

5.1. Core API v1

127

BMO Documentation

name type| description

id_or_maived An integer user ID or login name of the user.

ids | ar- | Integer user IDs. Logged=out users cannot pass this parameter to this function. If they try, they will
ray | getan error. Logged=in users will get an error if they specify the ID of a user they cannot see.

names ar- | Login names.
ray
match ar- | This works just like “user matching” in Bugzilla itself. Users will be returned whose real name or

ray | login name contains any one of the specified strings. Users that you cannot see will not be included
in the returned list.

Most installations have a limit on how many matches are returned for each string; the default is 1000
but can be changed by the Bugzilla administrator.

Logged-out users cannot use this argument, and an error will be thrown if they try. (This is to make it
harder for spammers to harvest email addresses from Bugzilla, and also to enforce the user visibility
restrictions that are implemented on some Bugzillas.)

limit| int | Limit the number of users matched by the match parameter. If the value is greater than the system
limit, the system limit will be used. This parameter is only valid when using the match parameter.
group_ads | Numeric IDs for groups that a user can be in.

ray

groupsar- | Names of groups that a user can be in. If group_ids or groups are specified, they limit the return
ray | value to users who are in any of the groups specified.

in- | boolgaBy default, when using the match parameter, disabled users are excluded from the returned results

clude_disablednless their full username is identical to the match string. Setting include_disabled to true will
include disabled users in the returned results even if their username doesn’t fully match the input string.

Response

* users: (array) Each object describes a user and has the following items:

name| type| description

id int | The unique integer ID that Bugzilla uses to represent this user. Even if the user’s login name changes,
this will not change.

real_namteing The actual name of the user. May be blank.

nick | string The user’s nickname. Currently this is extracted from the real_name, name or email field.

email | string The email address of the user.

name | string The login name of the user. Note that in some situations this is different than their email.
can_lgghoolgai\ boolean value to indicate if the user can login into Bugzilla.

email_|ebabled®\ boolean value to indicate if bug-related mail will be sent to the user or not.

lo- string A text field that holds the reason for disabling a user from logging into Bugzilla. If empty then the
gin_de¢nied_textser account is enabled; otherwise it is disabled/closed.

groups ar- | Groups the user is a member of. If the currently logged in user is querying their own account or is
ray | a member of the ‘editusers’ group, the array will contain all the groups that the user is a member of.
Otherwise, the array will only contain groups that the logged in user can bless. Each object describes
the group and contains the items described in the Group object below.

saved_|samrchesUser’s saved searches, each having the following Search object items described below.

ray
saved_|repports User’s saved reports, each having the following Search object items described below.
ray

Group object:

128 Chapter 5. WebService API Reference

BMO Documentation

name type | description

id int The group ID

name string | The name of the group
description | string | The description for the group

Search object:

name | type | description

id int An integer ID uniquely identifying the saved report.
name | string | The name of the saved report.

query | string | The CGI parameters for the saved report.

If you are not authenticated when you call this function, you will only be returned the id, name, real_name and nick
items. If you are authenticated and not in ‘editusers’ group, you will only be returned the id, name, real_name, nick,
email, can_login and groups items. The groups returned are filtered based on your permission to bless each group.
The saved_searches and saved_reports items are only returned if you are querying your own account, even if you
are in the editusers group.

Errors

* 51 (Bad Login Name or Group ID) You passed an invalid login name in the “names” array or a bad group ID in
the “group_ids” argument.

* 52 (Invalid Parameter) The value used must be an integer greater than zero.

* 304 (Authorization Required) You are logged in, but you are not authorized to see one of the users you wanted
to get information about by user id.

¢ 505 (User Access By Id or User-Matching Denied) Logged-out users cannot use the “ids” or “match” arguments
to this function.

* 804 (Invalid Group Name) You passed a group name in the “groups” argument which either does not exist or you
do not belong to it.

Who Am |

Allows for validating a user’s API key, token, or username and password. If successfully authenticated, it returns simple
information about the logged in user.

Request

GET /rest/whoami

Response

{
"id" @ "1234",
"name" : "user@bugzilla.org",
"real_name" : "Test User",
"nick" : "user"

3

5.1. Core API v1 129

BMO Documentation

name type | description

id int The unique integer ID that Bugzilla uses to represent this user. Even if the user’s login name
changes, this will not change.

real_name string| The actual name of the user. May be blank.

nick string| The user’s nickname. Currently this is extracted from the real_name, name or email field.

name string| string The login name of the user.

This documentation undoubtedly has bugs; if you find some, please file them here.

This documentation undoubtedly has bugs; if you find some, please file them here.

This documentation undoubtedly has bugs; if you find some, please file them here.

This documentation undoubtedly has bugs; if you find some, please file them here.

130 Chapter 5. WebService API Reference

https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation
https://bugzilla.mozilla.org/enter_bug.cgi?product=bugzilla.mozilla.org&component=Documentation

	About This Documentation
	Evaluating Bugzilla
	Getting More Help
	Document Conventions
	License
	Credits

	User Guide
	Creating an Account
	Filing a Bug
	Reporting a New Bug
	Clone an Existing Bug

	Understanding a Bug
	Flags
	A Simple Example
	About Flags
	Flag Requests
	Attachment Flags
	Bug Flags

	Editing a Bug
	Attachments
	Flags
	Time Tracking
	Life Cycle of a Bug

	Finding Bugs
	Quicksearch
	Simple Search
	Advanced Search
	Custom Search
	Negation
	Pronoun Substitution
	Searching for Bugs Restricted to Groups
	Searching on Relative Dates

	Bug Lists

	Reports and Charts
	Reports
	Charts
	Creating Charts
	Creating New Data Sets

	Pro Tips
	Autolinkification
	Comments

	User Preferences
	General Preferences
	Email Preferences
	Saved Searches
	Account Information
	API Keys
	Permissions

	Installed Extensions

	Administration Guide
	Parameters
	General
	Administrative Policies
	User Authentication
	Attachments
	Bug Change Policies
	Bug Fields
	Graphs
	Group Security
	LDAP
	RADIUS
	Email
	Query Defaults
	Shadow Database
	User Matching
	Advanced

	Default Preferences
	Users
	Creating Admin Users
	Searching For Users
	Modifying Users
	Creating New Users
	Self-Registration
	Administrator Registration

	Deleting Users
	Impersonating Users

	Classifications, Products, Components, Versions, and Milestones
	Classifications
	Products
	Creating New Products
	Editing Products
	Adding or Editing Components, Versions and Target Milestones
	Assigning Group Controls to Products
	Common Applications of Group Controls
	Basic Product/Group Restriction
	General User Access With Security Group
	General User Access With A Security Product
	Product Isolation With a Common Group
	Make a Product Read Only

	Components
	Versions
	Milestones

	Flags
	Flag Properties
	Deleting a Flag

	Custom Fields
	Adding Custom Fields
	Editing Custom Fields
	Deleting Custom Fields

	Field Values
	Viewing/Editing Legal Values
	Deleting Legal Values

	Workflow
	Groups and Security
	Creating Groups
	Editing Groups and Assigning Group Permissions
	Assigning Users to Groups
	Assigning Group Controls to Products

	Keywords
	Whining
	The Event
	Whining Schedule
	Whining Searches
	Saving Your Changes

	Quips
	Installed Extensions

	Integration and Customization Guide
	Customization FAQ
	Languages
	Skins
	Templates
	Template Directory Structure
	Choosing a Customization Method
	How To Edit Templates
	Template Formats and Types
	Particular Templates

	Extensions
	Adding A New Page to Bugzilla
	Altering Data On An Existing Page
	Adding New Fields To Bugs
	Adding New Fields To Other Things
	Adding Admin Configuration Panels
	Adding User Preferences
	Altering Who Can Change What
	Checking Syntax

	APIs
	Ad-Hoc APIs
	REST

	Authentication Delegation via API Keys
	Authentication Flow

	Adding an Auth0 Custom Social Integration

	WebService API Reference
	Core API v1
	General
	Basic Information
	Common Data Types
	Authentication
	Useful Parameters

	Attachments
	Get Attachment
	Create Attachment
	Update Attachment

	Bugs
	Get Bug
	Bug History
	Search Bugs
	Create Bug
	Update Bug
	Possible Duplicates

	Bug User Last Visited
	Update Last Visited
	Get Last Visited

	Flag Activity
	Get Flag Activity

	Bugzilla Information
	Version
	Extensions
	Timezone
	Time
	Parameters
	Last Audit Time
	Job Queue Status

	Classifications
	Get Classification

	Comments
	Get Comments
	Create Comments
	Search Comment Tags
	Update Comment Tags
	Render Comment

	Bug Fields
	Fields
	Legal Values

	Groups
	Create Group
	Update Group
	Get Group

	Products
	List Products
	Get Product
	Create Product
	Update Product

	Users
	Login
	Logout
	Valid Login
	Create User
	Update User
	Get User
	Who Am I

